mirror of
https://github.com/adambard/learnxinyminutes-docs.git
synced 2024-12-20 22:01:36 +03:00
18 KiB
18 KiB
language | filename | contributors | translators | lang | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
swift | learnswift-cn.swift |
|
|
zh-cn |
Swift 是 Apple 开发的用于 iOS 和 OS X 开发的编程语言。Swift 于2014年 Apple WWDC (全球开发者大会)中被引入,用以与 Objective-C 共存,同时对错误代码更具弹性。Swift 由 Xcode 6 beta 中包含的 LLVM 编译器编译。
Swift 的官方语言教程 Swift Programming Language 可以从 iBooks 免费下载.
亦可参阅:Apple's getting started guide ——一个完整的Swift 教程
// 导入外部模块
import UIKit
//
// MARK: 基础
//
// XCODE 支持给注释代码作标记,这些标记会列在 XCODE 的跳转栏里,支持的标记为
// MARK: 普通标记
// TODO: TODO 标记
// FIXME: FIXME 标记
println("Hello, world")
// 变量 (var) 的值设置后可以随意改变
// 常量 (let) 的值设置后不能改变
var myVariable = 42
let øπΩ = "value" // 可以支持 unicode 变量名
let π = 3.1415926
let myConstant = 3.1415926
let explicitDouble: Double = 70 // 明确指定变量类型为 Double ,否则编译器将自动推断变量类型
let weak = "keyword"; let override = "another keyword" // 语句之间可以用分号隔开,语句未尾不需要分号
let intValue = 0007 // 7
let largeIntValue = 77_000 // 77000
let label = "some text " + String(myVariable) // 类型转换
let piText = "Pi = \(π), Pi 2 = \(π * 2)" // 格式化字符串
// 条件编译
// 使用 -D 定义编译开关
#if false
println("Not printed")
let buildValue = 3
#else
let buildValue = 7
#endif
println("Build value: \(buildValue)") // Build value: 7
/*
Optionals 是 Swift 的新特性,它允许你存储两种状态的值给 Optional 变量:有效值或 None
Swift 要求所有的 Optinal 属性都必须有明确的值,如果为空,则必须明确设定为 nil
Optional<T> 是个枚举类型
*/
var someOptionalString: String? = "optional" // 可以是 nil
// 下面的语句和上面完全等价,上面的写法更推荐,因为它更简洁,问号 (?) 是 Swift 提供的语法糖
var someOptionalString2: Optional<String> = "optional"
if someOptionalString != nil {
// 变量不为空
if someOptionalString!.hasPrefix("opt") {
println("has the prefix")
}
let empty = someOptionalString?.isEmpty
}
someOptionalString = nil
// 显式解包 optional 变量
var unwrappedString: String! = "Value is expected."
// 下面语句和上面完全等价,感叹号 (!) 是个后缀运算符,这也是个语法糖
var unwrappedString2: ImplicitlyUnwrappedOptional<String> = "Value is expected."
if let someOptionalStringConstant = someOptionalString {
// 由于变量 someOptinalString 有值,不为空,所以 if 条件为真
if !someOptionalStringConstant.hasPrefix("ok") {
// does not have the prefix
}
}
// Swift 支持可保存任何数据类型的变量
// AnyObject == id
// 和 Objective-C `id` 不一样, AnyObject 可以保存任何类型的值 (Class, Int, struct, 等)
var anyObjectVar: AnyObject = 7
anyObjectVar = "Changed value to a string, not good practice, but possible."
/*
这里是注释
/*
支持嵌套的注释
*/
*/
//
// Mark: 数组与字典(关联数组)
//
/*
Array 和 Dictionary 是结构体,不是类,他们作为函数参数时,是用值传递而不是指针传递。
可以用 `var` 和 `let` 来定义变量和常量。
*/
// Array
var shoppingList = ["catfish", "water", "lemons"]
shoppingList[1] = "bottle of water"
let emptyArray = [String]() // 使用 let 定义常量,此时 emptyArray 数组不能添加或删除内容
let emptyArray2 = Array<String>() // 与上一语句等价,上一语句更常用
var emptyMutableArray = [String]() // 使用 var 定义变量,可以向 emptyMutableArray 添加数组元素
// 字典
var occupations = [
"Malcolm": "Captain",
"kaylee": "Mechanic"
]
occupations["Jayne"] = "Public Relations" // 修改字典,如果 key 不存在,自动添加一个字典元素
let emptyDictionary = [String: Float]() // 使用 let 定义字典常量,字典常量不能修改里面的值
let emptyDictionary2 = Dictionary<String, Float>() // 与上一语句类型等价,上一语句更常用
var emptyMutableDictionary = [String: Float]() // 使用 var 定义字典变量
//
// MARK: 控制流
//
// 数组的 for 循环
let myArray = [1, 1, 2, 3, 5]
for value in myArray {
if value == 1 {
println("One!")
} else {
println("Not one!")
}
}
// 字典的 for 循环
var dict = ["one": 1, "two": 2]
for (key, value) in dict {
println("\(key): \(value)")
}
// 区间的 loop 循环:其中 `...` 表示闭环区间,即[-1, 3];`..<` 表示半开闭区间,即[-1,3)
for i in -1...shoppingList.count {
println(i)
}
shoppingList[1...2] = ["steak", "peacons"]
// 可以使用 `..<` 来去掉最后一个元素
// while 循环
var i = 1
while i < 1000 {
i *= 2
}
// do-while 循环
do {
println("hello")
} while 1 == 2
// Switch 语句
// Swift 里的 Switch 语句功能异常强大,结合枚举类型,可以实现非常简洁的代码,可以把 switch 语句想象成 `if` 的语法糖
// 它支持字符串,类实例或原生数据类型 (Int, Double, etc)
let vegetable = "red pepper"
switch vegetable {
case "celery":
let vegetableComment = "Add some raisins and make ants on a log."
case "cucumber", "watercress":
let vegetableComment = "That would make a good tea sandwich."
case let localScopeValue where localScopeValue.hasSuffix("pepper"):
let vegetableComment = "Is it a spicy \(localScopeValue)?"
default: // 在 Swift 里,switch 语句的 case 必须处理所有可能的情况,如果 case 无法全部处理,则必须包含 default语句
let vegetableComment = "Everything tastes good in soup."
}
//
// MARK: 函数
//
// 函数是一个 first-class 类型,他们可以嵌套,可以作为函数参数传递
// 函数文档可使用 reStructedText 格式直接写在函数的头部
/**
A greet operation
- A bullet in docs
- Another bullet in the docs
:param: name A name
:param: day A day
:returns: A string containing the name and day value.
*/
func greet(name: String, day: String) -> String {
return "Hello \(name), today is \(day)."
}
greet("Bob", "Tuesday")
// 函数参数前带 `#` 表示外部参数名和内部参数名使用同一个名称。
// 第二个参数表示外部参数名使用 `externalParamName` ,内部参数名使用 `localParamName`
func greet2(#requiredName: String, externalParamName localParamName: String) -> String {
return "Hello \(requiredName), the day is \(localParamName)"
}
greet2(requiredName:"John", externalParamName: "Sunday") // 调用时,使用命名参数来指定参数的值
// 函数可以通过元组 (tuple) 返回多个值
func getGasPrices() -> (Double, Double, Double) {
return (3.59, 3.69, 3.79)
}
let pricesTuple = getGasPrices()
let price = pricesTuple.2 // 3.79
// 通过下划线 (_) 来忽略不关心的值
let (_, price1, _) = pricesTuple // price1 == 3.69
println(price1 == pricesTuple.1) // true
println("Gas price: \(price)")
// 可变参数
func setup(numbers: Int...) {
// 可变参数是个数组
let number = numbers[0]
let argCount = numbers.count
}
// 函数变量以及函数作为返回值返回
func makeIncrementer() -> (Int -> Int) {
func addOne(number: Int) -> Int {
return 1 + number
}
return addOne
}
var increment = makeIncrementer()
increment(7)
// 强制进行指针传递 (引用传递),使用 `inout` 关键字修饰函数参数
func swapTwoInts(inout a: Int, inout b: Int) {
let tempA = a
a = b
b = tempA
}
var someIntA = 7
var someIntB = 3
swapTwoInts(&someIntA, &someIntB)
println(someIntB) // 7
//
// MARK: 闭包
//
var numbers = [1, 2, 6]
// 函数是闭包的一个特例
// 闭包实例
// `->` 分隔了闭包的参数和返回值
// `in` 分隔了闭包头 (包括参数及返回值) 和闭包体
// 下面例子中,`map` 的参数是一个函数类型,它的功能是把数组里的元素作为参数,逐个调用 `map` 参数传递进来的函数。
numbers.map({
(number: Int) -> Int in
let result = 3 * number
return result
})
// 当闭包的参数类型和返回值都是己知的情况下,且只有一个语句作为其返回值时,我们可以简化闭包的写法
numbers = numbers.map({ number in 3 * number })
// 我们也可以使用 $0, $1 来指代第 1 个,第 2 个参数,上面的语句最终可简写为如下形式
// numbers = numbers.map({ $0 * 3 })
print(numbers) // [3, 6, 18]
// 简洁的闭包
numbers = sorted(numbers) { $0 > $1 }
// 函数的最后一个参数可以放在括号之外,上面的语句是这个语句的简写形式
// numbers = sorted(numbers, { $0 > $1 })
print(numbers) // [18, 6, 3]
// 超级简洁的闭包,因为 `<` 是个操作符函数
numbers = sorted(numbers, < )
print(numbers) // [3, 6, 18]
//
// MARK: 结构体
//
// 结构体和类非常类似,可以有属性和方法
struct NamesTable {
let names = [String]()
// 自定义下标运算符
subscript(index: Int) -> String {
return names[index]
}
}
// 结构体有一个自动生成的隐含的命名构造函数
let namesTable = NamesTable(names: ["Me", "Them"])
let name = namesTable[1]
println("Name is \(name)") // Name is Them
//
// MARK: 类
//
// 类和结构体的有三个访问控制级别,他们分别是 internal (默认), public, private
// internal: 模块内部可以访问
// public: 其他模块可以访问
// private: 只有定义这个类或结构体的源文件才能访问
public class Shape {
public func getArea() -> Int {
return 0;
}
}
// 类的所有方法和属性都是 public 的
// 如果你只是需要把数据保存在一个结构化的实例里面,应该用结构体
internal class Rect: Shape {
// 值属性 (Stored properties)
var sideLength: Int = 1
// 计算属性 (Computed properties)
private var perimeter: Int {
get {
return 4 * sideLength
}
set {
// `newValue` 是个隐含的变量,它表示将要设置进来的新值
sideLength = newValue / 4
}
}
// 延时加载的属性,只有这个属性第一次被引用时才进行初始化,而不是定义时就初始化
// subShape 值为 nil ,直到 subShape 第一次被引用时才初始化为一个 Rect 实例
lazy var subShape = Rect(sideLength: 4)
// 监控属性值的变化。
// 当我们需要在属性值改变时做一些事情,可以使用 `willSet` 和 `didSet` 来设置监控函数
// `willSet`: 值改变之前被调用
// `didSet`: 值改变之后被调用
var identifier: String = "defaultID" {
// `willSet` 的参数是即将设置的新值,参数名可以指定,如果没有指定,就是 `newValue`
willSet(someIdentifier) {
println(someIdentifier)
}
// `didSet` 的参数是已经被覆盖掉的旧的值,参数名也可以指定,如果没有指定,就是 `oldValue`
didSet {
println(oldValue)
}
}
// 命名构造函数 (designated inits),它必须初始化所有的成员变量,
// 然后调用父类的命名构造函数继续初始化父类的所有变量。
init(sideLength: Int) {
self.sideLength = sideLength
// 必须显式地在构造函数最后调用父类的构造函数 super.init
super.init()
}
func shrink() {
if sideLength > 0 {
--sideLength
}
}
// 函数重载使用 override 关键字
override func getArea() -> Int {
return sideLength * sideLength
}
}
// 类 `Square` 从 `Rect` 继承
class Square: Rect {
// 便捷构造函数 (convenience inits) 是调用自己的命名构造函数 (designated inits) 的构造函数
// Square 自动继承了父类的命名构造函数
convenience init() {
self.init(sideLength: 5)
}
// 关于构造函数的继承,有以下几个规则:
// 1. 如果你没有实现任何命名构造函数,那么你就继承了父类的所有命名构造函数
// 2. 如果你重载了父类的所有命名构造函数,那么你就自动继承了所有的父类快捷构造函数
// 3. 如果你没有实现任何构造函数,那么你继承了父类的所有构造函数,包括命名构造函数和便捷构造函数
}
var mySquare = Square()
println(mySquare.getArea()) // 25
mySquare.shrink()
println(mySquare.sideLength) // 4
// 类型转换
let aShape = mySquare as Shape
// 使用三个等号来比较是不是同一个实例
if mySquare === aShape {
println("Yep, it's mySquare")
}
class Circle: Shape {
var radius: Int
override func getArea() -> Int {
return 3 * radius * radius
}
// optional 构造函数,可能会返回 nil
init?(radius: Int) {
self.radius = radius
super.init()
if radius <= 0 {
return nil
}
}
}
// 根据 Swift 类型推断,myCircle 是 Optional<Circle> 类型的变量
var myCircle = Circle(radius: 1)
println(myCircle?.getArea()) // Optional(3)
println(myCircle!.getArea()) // 3
var myEmptyCircle = Circle(radius: -1)
println(myEmptyCircle?.getArea()) // "nil"
if let circle = myEmptyCircle {
// 此语句不会输出,因为 myEmptyCircle 变量值为 nil
println("circle is not nil")
}
//
// MARK: 枚举
//
// 枚举可以像类一样,拥有方法
enum Suit {
case Spades, Hearts, Diamonds, Clubs
func getIcon() -> String {
switch self {
case .Spades: return "♤"
case .Hearts: return "♡"
case .Diamonds: return "♢"
case .Clubs: return "♧"
}
}
}
// 当变量类型明确指定为某个枚举类型时,赋值时可以省略枚举类型
var suitValue: Suit = .Hearts
// 非整型的枚举类型需要在定义时赋值
enum BookName: String {
case John = "John"
case Luke = "Luke"
}
println("Name: \(BookName.John.rawValue)")
// 与特定数据类型关联的枚举
enum Furniture {
// 和 Int 型数据关联的枚举记录
case Desk(height: Int)
// 和 String, Int 关联的枚举记录
case Chair(brand: String, height: Int)
func description() -> String {
switch self {
case .Desk(let height):
return "Desk with \(height) cm"
case .Chair(let brand, let height):
return "Chair of \(brand) with \(height) cm"
}
}
}
var desk: Furniture = .Desk(height: 80)
println(desk.description()) // "Desk with 80 cm"
var chair = Furniture.Chair(brand: "Foo", height: 40)
println(chair.description()) // "Chair of Foo with 40 cm"
//
// MARK: 协议
// 与 Java 的 interface 类似
//
// 协议可以让遵循同一协议的类型实例拥有相同的属性,方法,类方法,操作符或下标运算符等
// 下面代码定义一个协议,这个协议包含一个名为 enabled 的计算属性且包含 buildShape 方法
protocol ShapeGenerator {
var enabled: Bool { get set }
func buildShape() -> Shape
}
// 协议声明时可以添加 @objc 前缀,添加 @objc 前缀后,
// 可以使用 is, as, as? 等来检查协议兼容性
// 需要注意,添加 @objc 前缀后,协议就只能被类来实现,
// 结构体和枚举不能实现加了 @objc 的前缀
// 只有添加了 @objc 前缀的协议才能声明 optional 方法
// 一个类实现一个带 optional 方法的协议时,可以实现或不实现这个方法
// optional 方法可以使用 optional 规则来调用
@objc protocol TransformShape {
optional func reshaped()
optional func canReshape() -> Bool
}
class MyShape: Rect {
var delegate: TransformShape?
func grow() {
sideLength += 2
// 在 optional 属性,方法或下标运算符后面加一个问号,可以优雅地忽略 nil 值,返回 nil。
// 这样就不会引起运行时错误 (runtime error)
if let allow = self.delegate?.canReshape?() {
// 注意语句中的问号
self.delegate?.reshaped?()
}
}
}
//
// MARK: 其它
//
// 扩展: 给一个已经存在的数据类型添加功能
// 给 Square 类添加 `Printable` 协议的实现,现在其支持 `Printable` 协议
extension Square: Printable {
var description: String {
return "Area: \(self.getArea()) - ID: \(self.identifier)"
}
}
println("Square: \(mySquare)") // Area: 16 - ID: defaultID
// 也可以给系统内置类型添加功能支持
extension Int {
var customProperty: String {
return "This is \(self)"
}
func multiplyBy(num: Int) -> Int {
return num * self
}
}
println(7.customProperty) // "This is 7"
println(14.multiplyBy(3)) // 42
// 泛型: 和 Java 及 C# 的泛型类似,使用 `where` 关键字来限制类型。
// 如果只有一个类型限制,可以省略 `where` 关键字
func findIndex<T: Equatable>(array: [T], valueToFind: T) -> Int? {
for (index, value) in enumerate(array) {
if value == valueToFind {
return index
}
}
return nil
}
let foundAtIndex = findIndex([1, 2, 3, 4], 3)
println(foundAtIndex == 2) // true
// 自定义运算符:
// 自定义运算符可以以下面的字符打头:
// / = - + * % < > ! & | ^ . ~
// 甚至是 Unicode 的数学运算符等
prefix operator !!! {}
// 定义一个前缀运算符,使矩形的边长放大三倍
prefix func !!! (inout shape: Square) -> Square {
shape.sideLength *= 3
return shape
}
// 当前值
println(mySquare.sideLength) // 4
// 使用自定义的 !!! 运算符来把矩形边长放大三倍
!!!mySquare
println(mySquare.sideLength) // 12