1
1
mirror of https://github.com/anoma/juvix.git synced 2024-12-12 14:28:08 +03:00
juvix/tests/positive/Polymorphism.mjuvix

106 lines
2.4 KiB
Plaintext
Raw Normal View History

module Polymorphism;
inductive Pair (A : Type) (B : Type) {
mkPair : A → B → Pair A B;
};
inductive Nat {
zero : Nat;
suc : Nat → Nat;
};
inductive List (A : Type) {
nil : List A;
-- TODO check that the return type is saturated with the proper variable
cons : A → List A → Nat;
};
inductive Bool {
false : Bool;
true : Bool;
};
id : (A : Type) → A → A;
id _ a ≔ a;
terminating
undefined : (A : Type) → A;
undefined A ≔ undefined A;
add : Nat → Nat → Nat;
add zero b ≔ b;
add (suc a) b ≔ suc (add a b);
nil' : (E : Type) → List E;
nil' A ≔ nil;
-- currying
nil'' : (E : Type) → List E;
nil'' E ≔ nil;
fst : (A : Type) → (B : Type) → Pair A B → A;
fst _ _ (mkPair a b) ≔ a;
p : Pair Bool Bool;
p ≔ mkPair true false;
swap : (A : Type) → (B : Type) → Pair A B → Pair B A;
swap A B (mkPair a b) ≔ mkPair b a;
curry : (A : Type) → (B : Type) → (C : Type)
→ (Pair A B → C) → A → B → C;
curry A B C f a b ≔ f (mkPair a b) ;
ap : (A : Type) → (B : Type)
→ (A → B) → A → B;
ap A B f a ≔ f a;
ite : (A : Type) → Bool → A → A → A;
ite _ true tt _ ≔ tt;
ite _ false _ ff ≔ ff;
headDef : (A : Type) → A → List A → A;
headDef _ d nil ≔ d;
headDef A _ (cons h _) ≔ h;
filter : (A : Type) → (A → Bool) → List A → List A;
filter A f nil ≔ nil;
filter A f (cons x xs) ≔ ite (List A) (f x) (cons x (filter A f xs)) (filter A f xs);
map : (A : Type) → (B : Type) →
(A → B) → List A → List B;
map A B f nil ≔ nil ;
map A B f (cons x xs) ≔ cons (f x) (map A B f xs);
zip : (A : Type) → (B : Type)
→ List A → List B → List (Pair A B);
zip A B nil _ ≔ nil;
zip A B _ nil ≔ nil;
zip A B (cons a as) (cons b bs) ≔ nil;
zipWith : (A : Type) → (B : Type) → (C : Type)
→ (A → B → C)
→ List A → List B → List C;
zipWith A B C f nil _ ≔ nil;
zipWith A B C f _ nil ≔ nil;
zipWith A B C f (cons a as) (cons b bs) ≔ cons (f a b) (zipWith A B C f as bs);
rankn : ((A : Type) → A → A) → Bool → Nat → Pair Bool Nat;
rankn f b n ≔ mkPair (f Bool b) (f Nat n);
-- currying
trankn : Pair Bool Nat;
trankn ≔ rankn id false zero;
l1 : List Nat;
l1 ≔ cons zero nil;
pairEval : (A : Type) → (B : Type) → Pair (A → B) A → B;
pairEval _ _ (mkPair f x) ≔ f x;
main : Nat;
main ≔ headDef Nat (pairEval Nat Nat (mkPair (add zero) zero))
(zipWith Nat Nat Nat add l1 l1);
end;