[Task link](https://www.pivotaltracker.com/story/show/182194574).
[ci no changelog needed]
This PR implements a new selection box that will replace an old (not really working) one in the component browser. The old selection box wasn't working well with the headers of the component groups, so we were forced to make a much harder implementation.
The new implementation duplicates some visual components and places them in a separate layer. Then, a rectangular mask cuts off everything that is not "selected". This way:
- We have more control over what the selected entries should look like.
- We can easily support the multi-layer structure of the component groups with headers.
- We avoid problems with nested masks that our renderer doesn't support at the moment.
To be more precise, we duplicate the following:
- Background of the component group becomes the "fill" of the selection.
- Entries text and icons - we can alter them easily.
- Header background and header text. By placing them in separate scene layers we ensure correct rendering order.
https://user-images.githubusercontent.com/6566674/173657899-1067f538-4329-44f9-9dc2-78c8a4708b5a.mp4
# Important Notes
- This PR implements the base of our future selection mechanism, selecting entries with a mouse and keyboard still has several issues that will be fixed in the future tasks.
- The scrolling behavior will also be improved in future tasks. Right we only restrict the selection box position so that it never leaves the borders of the component group.
- I added a new function to `add` shapes to new layers in a non-exclusive way (we had only `add_exclusive`) before. I have no idea how we didn't use this feature before even though we mention it a lot in the docs.
- The demo scene restricts the position of the selection box for one-column component groups but does not for the wide component group.
Put information about Virtual Component Groups in the Hierarchical Actions List.
https://www.pivotaltracker.com/story/show/181865548
# Important Notes
- This PR implements the subtask 2 of 2 in the ["Virtual Component Groups in the Hierarchical Action List" task](https://www.pivotaltracker.com/story/show/181865548).
- Note: the PR description does not include a screencast due to the changes in this PR not having any visual effect at this moment. The result of this PR's changes would be only observed in the Component Browser, but the Component Browser is not merged yet. As described in the task's Acceptance Criteria, the changes in this PR are currently only covered by tests.
- Manual integration testing with the Engine showed that a response to an `executionContext/getComponentGroups` request is non-empty only after an `executionContext/executionComplete` message is received by the IDE. (See also [a discussion on Discord](https://discord.com/channels/401396655599124480/983669600854106112).) This was not known by the IDE team or documented before, and the existing code was modified to take this into account. The protocol docs are expected to be updated by the Engine team.
- A list of component groups looked up in the suggestion database is cached in the node searcher as an optimization.
[ci no changelog needed]
Remove a `Symbol`from the `SymbolRegistry` when its `SpriteSystem` is dropped.
This fixes the remaining buffer leak (after #3504) in https://www.pivotaltracker.com/story/show/181943457
# Important Notes
- The `SymbolRegistry` now assigns unique `SymbolId`s, so that we can tell if a `SymbolId` refers to a `Symbol` that has already been unregistered (this shouldn't happen, but it's not statically-obvious that it doesn't, so if it occurs we shouldn't misbehave).
- Also fix a bug in how `buffer_count` was tracked (we were decrementing more than incrementing!).
### Pull Request Description
Using the new tooling (#3491), I investigated the **performance / compile-time tradeoff** of different codegen options for release mode builds. By scripting the testing procedure, I was able to explore many possible combinations of options, which is important because their interactions (on both application performance and build time) are complex. I found **two candidate profiles** that offer specific advantages over the current `release` settings (`baseline`):
- `thin16`: Supports incremental compiles in 1/3 the time of `baseline` in common cases. Application runs about 2% slower than `baseline`.
- `fat1-O4`: Application performs 13% better than `baseline`. Compile time is almost 3x `baseline`, and non-incremental.
(See key in first chart for the settings defining these profiles.)
We can build faster or run faster, though not in the same build. Because the effect sizes are large enough to be impactful to developer and user experience, respectively, I think we should consider having it both ways. We could **split the `release` profile** into two profiles to serve different purposes:
- `release`: A profile that supports fast developer iteration, while offering realistic performance.
- `production`: A maximally-optimized profile, for nightly builds and actual releases.
Since `wasm-pack` doesn't currently support custom profiles (rustwasm/wasm-pack#1111), we can't use a Cargo profile for `production`; however, we can implement our own profile by overriding rustc flags.
### Performance details
![perf](https://user-images.githubusercontent.com/1047859/170788530-ab6d7910-5253-4a2b-b432-8bfa0b4735ba.png)
As you can see, `thin16` is slightly slower than `baseline`; `fat1-O4` is dramatically faster.
<details>
<summary>Methodology (click to show)</summary>
I developed a procedure for benchmarking "whole application" performance, using the new "open project" workflow (which opens the IDE and loads a complex project), and some statistical analysis to account for variance. To gather this data:
Build the application with profiling:
`./run.sh ide build --profiling-level=debug`
Run the `open_project` workflow repeatedly:
`for i in $(seq 0 9); do dist/ide/linux-unpacked/enso --entry-point profile --workflow open_project --save-profile open_project_thin16_${i}.json; done`
For each profile recorded, take the new `total_self_time` output of the `intervals` tool; gather into CSV:
`echo $(for i in $(seq 0 9); do target/rust/debug/intervals < open_project_thin16_${i}.json | tail -n1 | awk '{print $2}'; do`
(Note that the output of intervals should not be considered stable; this command may need modification in the future. Eventually it would be nice to support formatted outputs...)
The data is ready to graph. I used the `boxplot` method of the [seaborn](https://seaborn.pydata.org/index.html) package, in order to show the distribution of data.
</details>
#### Build times
![thin16](https://user-images.githubusercontent.com/1047859/170788539-1578e41b-bc30-4f30-9b71-0b0181322fa5.png)
In the case of changing a file in `enso-prelude`, with the current `baseline` settings rebuilding takes over 3 minutes. With the `thin16` settings, the same rebuild completes in 40 seconds.
(To gather this data on different hardware or in the future, just run the new `bench-build.sh` script for each case to be measured.)
[ci no changelog needed]
This PR implements a new helper for the future Component Browser - `component_group::multi::Wrapper`. It propagates FRP events from multiple component groups and ensures that only a single component group is focused at all times.
See the updated component group demo scene (console logs shows propagated FRP events from all component groups):
https://user-images.githubusercontent.com/6566674/172359141-8ea6f1ba-e357-4c1b-852a-adb4d5207e03.mp4
- Fixed a `define_endpoints_2!` macro. FRP endpoints for `focus` events weren't connected properly.
- List View now uses an overlay shape to catch mouse events, it allows much easier implementation of `is_header_selected` in the component group.
This PR introduces a new structure delivered by Searcher Controller: The Component List.
The Component list is hierarchical, and its structure reflects how the components are displayed in Component Browser - only "submodule" section at this point, other sections will be covered in next tasks.
This does not introduce anything visual; the structures are tested in unit tests.
Fix a memory leak introduced by #3451. Found this to be part of the cause of [the buffer leaks](https://www.pivotaltracker.com/story/show/181943457/comments/231558434).
The problem with this use of `define_endpoints_2` is,
- The FRP network contains (strong) references to the `Model`.
- The `Model` has a strong reference to `api::Private`, which owns the FRP network.
Thus we never free the `Model`.
Define some workflows for batch-mode profiling.
Implemented:
- collapse nodes
- create node
- enter collapsed node
- new project
- open visualization
They can currently be built and run with a command like:
`./run.sh ide build --profiling-level=debug && dist/ide/linux-unpacked/enso --entry-point profile --workflow create_node --save-profile out.json`
And the data can be displayed with:
`dist/ide/linux-unpacked/enso --entry-point profiling_run_graph --load-profile out.json`
Demo of recording and viewing a profile with a command-line one-liner:
https://user-images.githubusercontent.com/1047859/169954795-2d9520ca-84f9-45d2-b83a-5063ebe6f718.mp4
See: https://www.pivotaltracker.com/story/show/182195399.
# Important Notes
- When defining workflows, two helpers are enough to allow us to tell when the action is really done: `Fixture::compile_new_shaders`, and `Fixture::backend_execution`. Often, it is appropriate to await both, but it depends on the task.
- The shader compiler is now driven by a `Controller`; while the `Compiler` is reset if context is lost, the `Controller`'s state survives context loss.
- A new `--load-profile` option supports specifying a profile by path when running `profiling_run_graph`.
- Drop the `with_same_start` profiler interface; we ended up preferring a child profiler convention, and this interface was not implemented compatibly with the stricter data model we've had since the introduction of `profiler::data`.
- Fix the noisy `rustfmt` output.
* The bash entry point was renamed `run.sh` -> `run`. Thanks to that `./run` works both on Linux and Windows with PowerShell (sadly not on CMD).
* Everyone's favorite checks for WASM size and program versions are back. These can be disabled through `--wasm-size-limit=0` and `--skip-version-check` respectively. WASM size limit is stored in `build-config.yaml`.
* Improved diagnostics for case when downloaded CI run artifact archive cannot be extracted.
* Added GH API authentication to the build script calls on CI. This should fix the macOS build failures that were occurring from time to time. (Actually they were due to runner being GitHub-hosted, not really an OS-specific issue by itself.)
* If the GH API Personal Access Token is provided, it will be validated. Later on it is difficult to say, whether fail was caused by wrong PAT or other issue.
* Renamed `clean` to `git-clean` as per suggestion to reduce risk of user accidently deleting unstaged work.
* Whitelisting dependabot from changelog checks, so PRs created by it are mergeable.
* Fixing issue where wasm-pack-action (third party) randomly failed to recognize the latest version of wasm-pack (macOS runners), leading to failed builds.
* Build logs can be filtered using `ENSO_BUILD_LOG` environment variable. See https://docs.rs/tracing-subscriber/0.3.11/tracing_subscriber/struct.EnvFilter.html#directives for the supported syntax.
* Improve help for ci-run source, to make clear that PAT token is required and what scope is expected there.
Also, JS parts were updated with some cleanups and fixes following the changes made when introducing the build script.
This PR contains minimal integration with new engine's method and an integration test printing the method's return value. It was written as a part of https://www.pivotaltracker.com/story/show/181743571
# Important Notes
The test requires 2022.1.1-nightly.2022-04-26 engine version or later.
Add a method in `SuggestionDatabase` allowing to find a suggestion entry by a fully qualified path, working faster than a linear search through all the entries in the `SuggestionDatabase`.
https://www.pivotaltracker.com/story/show/181852566
# Important Notes
- **Testing:** when testing the PR with the newest currently available nightly version of the Engine, you may observe the following warnings in the Chrome JS Developer Console (the numerical values may differ):
index.ts?ab16:289 WARN app/gui/src/model/suggestion_database.rs:61 An existing suggestion entry id at Standard.Base.Nothing.Nothing.is_nothing was overwritten with 768.
index.ts?ab16:289 WARN app/gui/src/model/suggestion_database.rs:61 An existing suggestion entry id at Standard.Base.Data.Numbers.Integer.up_to was overwritten with 936.
index.ts?ab16:289 WARN app/gui/src/model/suggestion_database.rs:61 An existing suggestion entry id at Standard.Base.Data.Numbers.Integer.down_to was overwritten with 937.
index.ts?ab16:289 WARN app/gui/src/model/suggestion_database.rs:61 An existing suggestion entry id at Standard.Base.Data.Text.Text.== was overwritten with 971.
This is a result of bugs in the Standard Library. Those are planned to be addressed by:
- #3480 short-term (to fix the specific bugs currently present in the Standard Library),
- https://www.pivotaltracker.com/story/show/182283983 long-term (to improve the Engine such that it disallows introducing this category of bugs in the Standard Library in the future).
(For more details, see also: https://discord.com/channels/401396655599124480/978929754138877962.)
As a result of the bugs mentioned above, the Engine is responding with some invalid replies. In case of such invalid replies, warnings are emitted in the JS Dev Console. Other than the warnings, the code is expected to work correctly with the Engine for the cases when the Engine returns correct data.
- A `HashMapTree` was used for storing the map. A quick back-of-the-envelope estimation of memory usage of a simpler alternative (a one-level `HashMap`) would put the alternative at ~1MB (~10k entities × averaged ~100 bytes per entity path), which was considered too much in a discussion with @farmaazon.
- The `HashMapTree::remove` method deletes a whole subtree of a `HashMapTree`. An alternative removal method was implemented for use in `suggestion_database::QualifiedNameToIdMap` to better match `HashMap` entry removal semantics.
- In case of path collisions, a warning is emitted.
- Paths are treated case-sensitively.
- The new method of the `SuggestionDatabase` type is currently only used in unit tests. This matches the explicit requirement in the Task's description.
- JS Developer Console logging was enabled for the `tracing` package. The `WARN` level was picked to match the default level enabled in the "old" logging infrastructure.
[ci no changelog needed]
This PR extends the Component Group Entry with icon and option to highlight the text. Here the convert has highlighted "con".
https://user-images.githubusercontent.com/3919101/169046537-4f8b823c-322e-40dc-8abb-24d1d7092341.mp4
### Important Notes
Although this PR includes effort for adjusting Component Group style to better reflect the design, it is not entirely finished: the selection still works badly and will be fixed in another PR.
[ci no changelog needed]
[Task link](https://www.pivotaltracker.com/story/show/181725003)
This PR implements a fully visible component group header while scrolling the group (using the ScrollArea).
The header moves in sync with scrolling movements (using new `set_header_pos` FRP input), so it looks like the component group is scrolled. ScrollArea masks the "scrolled" entries above the header. This design allows a fully visible header even though our renderer doesn't support nested layers masking yet.
The screencast:
https://user-images.githubusercontent.com/6566674/168320360-2c2017b2-0ef5-42ce-9c79-82b9641c1d73.mp4
The most recent one, with the updated demo scene from develop:
https://user-images.githubusercontent.com/6566674/168555268-8552c4b0-f887-4388-89a1-e65ddf668be6.mp4
# Important Notes
- I fixed the API of the list view so now it supports non-hardcoded scene layers (previously it did not). I also believe it was implemented incorrectly.
- I've found a [pretty weird bug](https://www.pivotaltracker.com/story/show/182193824): the component group inside the ScrollArea is invisible unless I add some arbitrary shape to the scroll area content. I use a `transparent_circle` for this purpose in the demo scene. The bug is probably related to masking the sublayers, though I wasn't able to reproduce it properly on a simpler example.
- The selection box is removed from the demo scene as agreed with @farmaazon . The correct implementation has proven to be much harder than I expected, and we will implement another approach in a separate PR.
- I also modified the `shadow::Parameters` so that it uses `Var`s instead of plain values.
The change promotes static methods of `Ref`, `get` and `put`, to be
methods of `Ref` type.
The change also removes `Ref` module from the default namespace.
Had to mostly c&p functional dispatch for now, in order for the methods
to be found. Will auto-generate that code as part of builtins system.
Related to https://www.pivotaltracker.com/story/show/182138899
* Extends the instrumentation of the code base and upgrades some FRPs to the newer API macro.
* Extends the run-graph demo scene to specify a profile via URL without recompilation.
* Fixes labels in the flame graph demo scene.
* Fixes an issue with loading profiles that contains escaped characters.
# Important Notes
* no longer contains the upgrade of the `text::View` to `define_endpoints_2`. This should be fixed as part of the text rendering rewrite.
[ci no changelog needed]
Parametrize the colors used in a Component Group view based on a single color passed to an FRP input.
Customizing the colors of a Component Group will be needed for the larger Component Group List panel. This customization will work as a visual hint for the User, helping them to distinguish different Component Groups in the panel. A single input color will be configured for every Component Group in the `package.yaml` file (see the Design Doc). Therefore, all shades of the color required by the Component Group view must be calculated from this single input color.
https://www.pivotaltracker.com/story/show/181725039
#### Visuals
The following screencast of the `component_group` debug scene shows how all required shades of color are calculated from a single input color. It also shows a new "dimmed" display mode of the Component Group. The debug scene does not support selecting entries in a "dimmed" Component Group, as this is not required by the Design Doc.
https://user-images.githubusercontent.com/273837/168074651-bf3d5ea5-99b0-4b69-9934-ad8565ffc54e.mov
The following is a screenshot of the Node Searcher, to demonstrate that it still works correctly:
<img width="623" alt="Screenshot 2022-05-09 at 17 13 01" src="https://user-images.githubusercontent.com/273837/167441109-e9a47b5a-45a2-4172-85ed-c593e43e02d6.png">
# Important Notes
- A new type `Params` was added in the `list_view::entry::Entry` trait. This was needed to allow passing FRP information to entries separately for every ListView instance.
- Note: `style_prefix` and `max_width_px` parameters of the `list_view::entry::Entry::new` function may get moved into the new `Params` type in the future. To save time, this was not attempted in this PR, as agreed with @farmaazon.
[ci no changelog needed]
* Extends the instrumentation of the code base and upgrades some FRPs to the newer API macro.
* Extends the run-graph demo scene to specify a profile via URL without recompilation.
* Fixes labels in the flame graph demo scene.
* Fixes an issue with loading profiles that contains escaped characters.
# Important Notes
[ci no changelog needed]
Implement a command that launches the application, runs a series of steps (a "workflow"), writes a profile to a file, and exits.
See: [#181775808](https://www.pivotaltracker.com/story/show/181775808)
# Important Notes
- The command to capture run and profile is used like: `./run profile --workflow=new_project --save-profile=out.json`. Defining some more workflows (collapse nodes, create node and edit value) comes next; they are implemented with the same infrastructure as the integration-tests.
- The `--save-profile` option can also be used when profiling interactively; when the option is provided, capturing a profile with the hotkey will write a file instead of dumping the data to the devtools console.
- If the IDE panics, the error message is now printed to the console that invoked the process, as well as the devtools console. (If a batch workflow fails, this allows us to see why.)
- New functionality (writing profile files, quitting on command, logging to console) relies on Electron APIs. These APIs are implemented in `index.js`, bridged to the render process in `preload.js`, and wrapped for use in Rust in a `debug_api` crate.
This PR replaces hard-coded `@Builtin_Method` and `@Builtin_Type` nodes in Builtins with an automated solution
that a) collects metadata from such annotations b) generates `BuiltinTypes` c) registers builtin methods with corresponding
constructors.
The main differences are:
1) The owner of the builtin method does not necessarily have to be a builtin type
2) You can now mix regular methods and builtin ones in stdlib
3) No need to keep track of builtin methods and types in various places and register them by hand (a source of many typos or omissions as it found during the process of this PR)
Related to #181497846
Benchmarks also execute within the margin of error.
### Important Notes
The PR got a bit large over time as I was moving various builtin types and finding various corner cases.
Most of the changes however are rather simple c&p from Builtins.enso to the corresponding stdlib module.
Here is the list of the most crucial updates:
- `engine/runtime/src/main/java/org/enso/interpreter/runtime/builtin/Builtins.java` - the core of the changes. We no longer register individual builtin constructors and their methods by hand. Instead, the information about those is read from 2 metadata files generated by annotation processors. When the builtin method is encountered in stdlib, we do not ignore the method. Instead we lookup it up in the list of registered functions (see `getBuiltinFunction` and `IrToTruffle`)
- `engine/runtime/src/main/java/org/enso/interpreter/runtime/callable/atom/AtomConstructor.java` has now information whether it corresponds to the builtin type or not.
- `engine/runtime/src/main/scala/org/enso/compiler/codegen/RuntimeStubsGenerator.scala` - when runtime stubs generator encounters a builtin type, based on the @Builtin_Type annotation, it looks up an existing constructor for it and registers it in the provided scope, rather than creating a new one. The scope of the constructor is also changed to the one coming from stdlib, while ensuring that synthetic methods (for fields) also get assigned correctly
- `engine/runtime/src/main/scala/org/enso/compiler/codegen/IrToTruffle.scala` - when a builtin method is encountered in stdlib we don't generate a new function node for it, instead we look it up in the list of registered builtin methods. Note that Integer and Number present a bit of a challenge because they list a whole bunch of methods that don't have a corresponding method (instead delegating to small/big integer implementations).
During the translation new atom constructors get initialized but we don't want to do it for builtins which have gone through the process earlier, hence the exception
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/MethodProcessor.java` - @Builtin_Method processor not only generates the actual code fpr nodes but also collects and writes the info about them (name, class, params) to a metadata file that is read during builtins initialization
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/MethodProcessor.java` - @Builtin_Method processor no longer generates only (root) nodes but also collects and writes the info about them (name, class, params) to a metadata file that is read during builtins initialization
- `lib/scala/interpreter-dsl/src/main/java/org/enso/interpreter/dsl/TypeProcessor.java` - Similar to MethodProcessor but handles @Builtin_Type annotations. It doesn't, **yet**, generate any builtin objects. It also collects the names, as present in stdlib, if any, so that we can generate the names automatically (see generated `types/ConstantsGen.java`)
- `engine/runtime/src/main/java/org/enso/interpreter/node/expression/builtin` - various classes annotated with @BuiltinType to ensure that the atom constructor is always properly registered for the builitn. Note that in order to support types fields in those, annotation takes optional `params` parameter (comma separated).
- `engine/runtime/src/bench/scala/org/enso/interpreter/bench/fixtures/semantic/AtomFixtures.scala` - drop manual creation of test list which seemed to be a relict of the old design
* New JSON profile format.
* Use string-table optimization for labels in JSON format.
* Use TimeOffset header to render beanpoles
* Log RPC messages sent to the backend.
* Display RPC requests on graph
* Simplify metadata-logging interface.
Implements a visualization that is integrated with our GUI profiling visualization for the multiprocess data implemented in #3395https://user-images.githubusercontent.com/1428930/165915395-c850c7b2-1cc5-4eb0-8f21-37565d113b1e.mp4
The visualization shows a horizontal line for Engine, Language Server and GUI and renders arrows for each message passed between them. Information about the message is revealed on hover.
# Important Notes
* this PR refactors the tooltip mechanism. Note that this has not been in active use anywhere else, as tooltips for node received a custom implementation and the tooltip that was previously implemented was used nowhere else yet.
[ci no changelog needed]
* The List View component was refactored: it allows for hiding the internal selection widget, and exposes information where the widget should be placed. This allows us to create selection widget in component list panel, so it can be animated between component groups and sections.
* Fixed some warnings when checking WASM code.
* Adjusted the style of Component Group View a little, so it better reflects the design doc. Still not ideal, because the list_view has some weird design regarding padding, but I don't want to stuck in some bigger refactoring.
I will add a video in a few minutes.
# Important Notes
https://user-images.githubusercontent.com/3919101/165507826-60329f9e-7de3-4eb2-9271-292e45568cb2.mov
See: [#181837344](https://www.pivotaltracker.com/story/show/181837344).
I've separated this PR from some deeper changes I'm making to the profile format, because the changeset was getting too complex. The new APIs and tools in this PR are fully-implemented, except the profile format is too simplistic--it doesn't currently support headers that are needed to determine the relative timings of events from different processes.
- Adds basic support for profile files containing data collected by multiple processes.
- Implements `api_events_to_profile`, a tool for converting backend message logs (#3392) to the `profiler` format so they can be merged with frontend profiles (currently they can be merged with `cat`, but the next PR will introduce a merge tool).
- Introduces `message_beanpoles`, a simple tool that diagrams timing relationships between frontend and backend messages.
### Important Notes
- All TODOs introduced here will be addressed in the next PR that defines the new format.
- Introduced a new crate, `enso_profiler_enso_data`, to be used by profile consumers that need to refer to Enso application datatypes to interpret metadata.
- Introduced a `ProfileBuilder` abstraction for writing the JSON profile format; partially decouples the runtime event log structures from the format definition.
- Introducing the conversion performed for `ProfilerBuilder` uncovered that the `.._with_same_start!` low-level `profiler` APIs don't currently work; they return `Started<_>` profilers, but that is inconsistent with the stricter data model that I introduced when I implemented `profiler_data`; they need to return profilers in a created, unstarted state. Low-level async profilers have not been a priority, but once #3382 merges we'll have a way to render their data, which will be really useful because async profilers capture *why* we're doing things. I'll bring up scheduling this in the next performance meeting.
Add logging of EnsoGL performance stats to the profiling framework. Also extends the visualization in the debug scene to show an overview of the performance stats. We now render a timeline of blocks that indicate by their colour the rough FPS range we are in:
https://user-images.githubusercontent.com/1428930/162433094-57fbb61a-b502-43bb-8815-b7fc992d3862.mp4
# Important Notes
[ci no changelog needed]
Needs to be merged after https://github.com/enso-org/enso/pull/3382 as it requires some changes about metadata logging from there. That is why this PR is currently still in draft mode and based on that branch.
In this branch:
* The workaround for cursor-not-being-updated-after-closing-searcher bug (discovered while testing #3278) is reverted.
* The proper fix was introduced: created an abstraction for EnsoGL component, which, when dropping, will not immediately drop the FRP network and model, but instead put it into the Garbage Collector. The Collector ensures, that all "component hiding" effects and events will be handled, and drops FRP network and model only after that.
* I run clippy for wasm32 target out of curiosity. There was one warning, and I fixed it on this branch.
When a new node is created with the <kbd>TAB</kbd> key or by clicking the `(+)` on-screen button while multiple nodes are selected, place the new node below all the selected nodes. (Previously, the new node was placed below the node that was selected earliest.)
Additionally, when placing a new node below an existing non-error node with a visualization enabled, place the new node below the visualization. (Previously, the new node was placed to the left of the visualization.)
https://www.pivotaltracker.com/story/show/180887079
#### Visuals
The following screencast demonstrates the feature on various arrangements of selected nodes, with visualization enabled and disabled.
https://user-images.githubusercontent.com/273837/159971452-148aa4d7-c0f3-4b48-871a-a2783989f403.mov
The following screencast demonstrates that new nodes created by double-clicking an output port of a node with visualization enabled are now placed below the visualization:
https://user-images.githubusercontent.com/273837/160107733-e3f7d0f9-0161-49d1-8cbd-06e18c843a20.mov
# Important Notes
- Some refactorings that were needed for this PR were ported from the #3301 PR:
- the code responsible for calculating the positions of new nodes was moved to a separate module (`new_node_position`);
- the `free_place_finder` module was made a submodule of the `new_node_position` module, due to the latter being its only user.
Use a new algorithm for placement of new nodes in cases when:
- a) there is no selected node, and the `TAB` key is pressed while the mouse pointer is near an existing node (especially in an area below an existing node);
- b) a connection is dragged out from an existing node and dropped near the node (especially in an area below the node).
In both cases mentioned above, the new node will now be placed in a location suggested by an internal algorithm, aligned to existing nodes. Specifically, the placement algorithm used is similar to when pressing `TAB` with a node selected.
For more details, see: https://www.pivotaltracker.com/story/show/181076066
# Important Notes
- Visible visualizations enabled with the "eye icon" button are treated as part of a node. (In case of nodes with errors, visualizations are not visible, and are not treated as part of a node.)
[ci no changelog needed]
This PR adds a few simple unit tests for GraphEditor, that can be used as an example of native Unit Tests.
Covered:
1. Creating nodes
- By internal API
- By using a TAB shortcut
- By using (+) button
- By dropping edge
2. Connecting two nodes with an edge
Some APIs were extended to allow their testing.
Usage of `glyph::System` in `text/component/area` was disabled by conditional compilation, as this code can't be used in native code due to JS dependencies.
* Profiling application details
Add enough profiling to account for every missed frame during startup.
See https://www.pivotaltracker.com/story/show/181499507
* Build ActiveInterval hierarchy in profiler_data
* update doctests / await_!
* docs/formatting/naming
* more graph modes
* increase WASM size
Due to new render-profile-flamegraph scene. We should remove these from the main release WASM blob one way or another.
* lint
* fix a test
* Organization (feedback)
* Add @wdanilo to Cargo.lock CODEOWNERS
As discussed after my previous PR got stuck waiting for Cargo.lock review.
* fix doctests
* Update docs. Removed a limitation.
Double-clicking a node's output port or clicking the port with a right mouse button (RMB) creates a new node aligned to the clicked node.
#### Visuals
The screencast below demonstrates the following features:
- double-clicking the left mouse button on a node's output port;
- clicking the right mouse button on a node's output port;
- alignment of the nodes created as a result of the actions described above;
- corner case: double-clicking (and RMB-clicking) on output ports of a "collapsed" ("enterable") node;
- double-clicking on a "collapsed" ("enterable") node still allows entering the node when done over an area of the node that is not the node's output port;
- basic support for nodes with multiple output ports (shown on the `interface` demo scene).
https://user-images.githubusercontent.com/273837/158991856-e0faa5f0-9d2f-44bd-bddd-ba314977db6e.mov
The supplementary screencast below demonstrates that double-clicking or RMB-clicking a node's output port cancels the action of dragging a new connection from a node.
https://user-images.githubusercontent.com/273837/158998097-100aed42-37ff-4467-939f-2b755ef0d3dc.movhttps://www.pivotaltracker.com/story/show/181076145
# Important Notes
- The "double-clicking a node" shortcut was previously used to allow entering a "collapsed" node (for example, a node created by pressing the `cmd+g` keyboard shortcut after selecting a group of nodes). This PR keeps that functionality when the user double-clicks on a node, as long as the mouse is not positioned over the node's output ports.
- The support for nodes with multiple output ports is currently very basic. The information about a port (`Crumb`) is passed into the `create_node` function, but it is not passed further to `NodeSource`. The Node Searcher currently does not support passing port information through `NodeSource`.
@akavel spotted a compilation error, when building test for graph_editor crate. The cause was that:
* prelude without serde still added serde derivatives in im_string_newtype
* and the graph_editor needs serde from prelude anyway (because it wants to have serializable ImStrings).
In this PR two things are implemented:
1. Node Searcher zoom factor (and therefore its size) is fixed no matter how you move the main camera. The node searcher is also positioned directly below currently edited node at all times.
2. Node growth/shrink animation when you start/finish node editing. After animation end the edited node zoom factor is also fixed and matches the zoom factor of the node searcher.
See attached video with different ways of editing/creating nodes:
https://user-images.githubusercontent.com/6566674/157348758-2880aa2b-494d-46e6-8eee-a22be84081ed.mp4
#### Technical details
1. Added several additional scene layers for separate rendering: `node_searcher`, `node_searcher_text`, `edited_node`, `edited_node_text`. Searcher is always rendered by `node_searcher` camera, edited node moves between its usual layers and `edited_node` layer. Because text rendering uses different API, all node components were modified to support change of the layer.
2. Also added `node_searcher` DOM layer, because documentation is implemented as a DOM object.
3. Added two FRP endpoints for `ensogl::Animation`: `on_end` and `set_value`. These endpoints are useful while implementing growth/shrink animation.
4. Added FRP endpoints for the `Camera2d`: `position` and `zoom` outputs. This allows to synchronize cameras easily using FRP networks.
5. Growth/shrink animation implemented in GraphEditor by blending two animations, similar to Node Snapping implementation. However, shrinking animation is a bit tricky to implement correctly, as we must always return node back to the `main` scene layer after editing is done.
* Creating a new node with the (+) button (#3278)
[The Task](https://www.pivotaltracker.com/story/show/180887253)
A new (+) button on the left-bottom corner appeared. It may be clicked to open searcher in the middle of the scene, as an alternative to tab key.
https://user-images.githubusercontent.com/3919101/154514279-7972ed6a-0203-47cb-9a09-82dba948cf2f.mp4
* The window_control_buttons::common was extracted to separate crate `ensogl-component-button` almost without change.
* This includes a severe refactoring of adding nodes in general in the Graph Editor. The whole responsibility of adding new nodes (and starting their editing) was moved to Graph Editor - the Project View only reacts for GE events to show searcher properly.
* The status bar was moved from the bottom-left corner to the middle-top of the scene. It does not collide with (+) button, and plays "notification" role anyway.
* The `interface` debug scene was buggy. The problem was with one expression's span-tree. When I replaced it, the scene works.
* I've removed "new searcher" API, as it is completely outdated.
* I've changed code owners of integration tests to GUI team, as it is the team writing mostly the integration tests (int rust)
* Fix regression #181528359
* Add docs & remove unused function
* Fix & enable native Rust tests
* Fix formatting
Co-authored-by: Adam Obuchowicz <adam.obuchowicz@enso.org>
Co-authored-by: mergify[bot] <37929162+mergify[bot]@users.noreply.github.com>
PR fixes the issue when the user is unable to sign in with Google.
In the end, my assumption about the `User-Agent` header was correct and Google sign-in works with the recent Electron out of the box.
[ci no changelog needed]
This PR reverts commit [0836ce741d](0836ce741d) because of the spotted regression:
To reproduce:
1. Open a default project.
2. Without doing anything else, cmd + click on any node to edit it.
3. Abort editing by pressing escape.
4. Top-most node disappears (it is actually removed from scene)
If you start editing the bottom node - you will also see a visible regression in node searcher's position.
See thread https://discord.com/channels/401396655599124480/950730235719065620/950731247909478410 for details.
Fix comments introduced in commit 807506485d so that they're full English sentences (ending in a dot `.`). Also, fix them to avoid redundantly spelling "All" and "always" in the same sentences.
See a thread on Discord: https://discord.com/channels/401396655599124480/407883608204771338/948857557219418162
> Your commit is not following style guide (https://github.com/enso-org/enso/pull/3307). Please revert it and create a PR with comments that are correct English sentences (with dots at the end).
> Also, why some of the comments have ", always." ending and some not? I understand that "Modules should be documented" is applied always as well, isn't it?
# Important Notes
[ci no changelog needed]
Add an API to create a flame graph from profiling data. Also adds a demo scene showcasing the functionality that generates some profiling data by measuring dummy function calls and rendering a flame graph for the dummy data (see video for the result).
Not that the functionality is not yet exposed user-facing in the GUI itself, but only as API and demo scene, therefore [ci no changelog needed]
https://user-images.githubusercontent.com/1428930/155118977-ecac0628-777c-48bd-9aa7-30ee6aef1976.mp4
# Important Notes
* Change from the initial design: labels are shown on the flame graph instead of as a tooltip. This is because tooltips are currently only implemented in the graph editor and would require some additional refactoring (probably taking the better part of a day).
* re-instated the behaviour that logs are shown in the JS console if development mode is active.
Remove a module-level `#![allow(missing_docs)]` attribute from 2 modules in `graph-editor` crate. Instead, add the same attribute with a `FIXME` comment to lower-level entities.
See discussion at: https://discord.com/channels/401396655599124480/947797676823560193
# Important Notes
There are still 37 module-level `allow(missing_docs)` attributes present in the codebase after this change:
```
$ git grep '^#!.allow.missing_docs.' | wc -l
22
$ git grep -A1 '^#.allow.missing_docs.' | grep -w mod | wc -l
15
```
[ci no changelog needed]
[ci no changelog needed]
Entry points links were not clickable if an empty entry name was provided, like `http://localhost:8080?entry=`
The reason was the loader div that covered the whole screen.
[The Task](https://www.pivotaltracker.com/story/show/180887253)
A new (+) button on the left-bottom corner appeared. It may be clicked to open searcher in the middle of the scene, as an alternative to tab key.
https://user-images.githubusercontent.com/3919101/154514279-7972ed6a-0203-47cb-9a09-82dba948cf2f.mp4
# Important Notes
* The window_control_buttons::common was extracted to separate crate `ensogl-component-button` almost without change.
* This includes a severe refactoring of adding nodes in general in the Graph Editor. The whole responsibility of adding new nodes (and starting their editing) was moved to Graph Editor - the Project View only reacts for GE events to show searcher properly.
* The status bar was moved from the bottom-left corner to the middle-top of the scene. It does not collide with (+) button, and plays "notification" role anyway.
* The `interface` debug scene was buggy. The problem was with one expression's span-tree. When I replaced it, the scene works.
* I've removed "new searcher" API, as it is completely outdated.
* I've changed code owners of integration tests to GUI team, as it is the team writing mostly the integration tests (int rust)
[Task link](#181181203).
This is a reincarnation of PR [3273](https://github.com/enso-org/enso/pull/3273).
The maximum zoom factor of Graph Editor is limited to 1.0x. It is not possible to zoom in from the default camera position.
Debug Mode (activated with `ctrl-shift-d` shortcut) allows to zoom up to 100.0x (the previous behavior of Graph Editor).
If you enable Debug Mode, then zoom in and disable Debug Mode - you won't see the immediate change of zoom factor back to 1.0x. But it will "jump" (with animation) back once you make a zoom in/out event with your controls.
Video:
https://user-images.githubusercontent.com/6566674/154037310-1d166737-353e-4ae6-aca1-f7840571ab16.mp4
# Important Notes
This is a reincarnation of PR [3273](https://github.com/enso-org/enso/pull/3273). There are two changes since that PR:
1. Fixed bug with GeoMap zooming described [here](https://github.com/enso-org/enso/pull/3290). This is done by restricting `ZoomEvent` API so that it will never contain `amount` which is equal to `0.0`.
2. A few refactoring changes from https://github.com/enso-org/enso/pull/3289 to simplify code a bit.
This change makes EnsoGL runtime stats be always collected, even when EnsoGL `Monitor` panel is not visible. Those stats are intended to be used in the future by a profiling framework.
**Performance impact:** Continuous collection of stats introduces an overhead of two Web Performance API `now()` calls in each frame of the main rendering loop, plus a small number of simple arithmetic calculations. This is assumed to be a negligible and acceptable overhead.
#### Visuals
A screenshot of the Monitor panel in full `ide` after applying the PR, taken in IDE built with `./run dist`:
<img width="991" alt="Screenshot 2022-02-14 at 16 11 42" src="https://user-images.githubusercontent.com/273837/153891378-8a2fb333-34ce-46ce-99df-7d796817310c.png">
A recording, also in IDE built with `./run dist`; note that FPS is impacted by the act of recording itself:
https://user-images.githubusercontent.com/273837/154104016-49a12e23-1210-4477-9743-ec1611e5b4ed.movhttps://www.pivotaltracker.com/story/show/181093601
# Important Notes
- Responsibility for controlling how `Stats` gathering and calculation is performed at various points in the main rendering loop was removed from `Monitor` - the `Monitor`'s purpose is only to display existing data, it should not influence how the data is collected.
- Two previously existing distinct `Monitor` structs were merged into one, to avoid confusion; after previous refactorings, the remaining `stats::Monitor` did not have much useful code anyway.
- In `stats` package, refactoring was done, to make `StatsData` a "dumb", data-only type, and to move the logic related to stats collection and frame tracking to other helper types.
[ci no changelog needed]
* profiling instrumentation
* Support native testing with mock impl of `mod js`
* Add benchmarks
* Wrapper: support methods.
* `#[profile]`: work in any context
* feature-gate lineno info that breaks IDE
* Support async; more docs; add perf analysis
* docs & formatting
* Implement conversions
start wip branch for conversion methods for collaborating with marcin
add conversions to MethodDispatchLibrary (wip)
start MethodDispatchLibrary implementations
conversions for atoms and functions
Implement a bunch of missing conversion lookups
final bug fixes for merged methoddispatchlibrary implementations
UnresolvedConversion.resolveFor
progress on invokeConversion
start extracting constructors (still not working)
fix a bug
add some initial conversion tests
fix a bug in qualified name resolution, test conversions accross modules
implement error reporting, discover a ton of ignored errors...
start fixing errors that we exposed in the standard library
fix remaining standard lib type errors not caused by the inability to parse type signatures for operators
TODO: fix type signatures for operators. all of them are broken
fix type signature parsing for operators
test cases for meta & polyglot
play nice with polyglot
start pretending unresolved conversions are unresolved symbols
treat UnresolvedConversons as UnresolvedSymbols in enso user land
* update RELEASES.md
* disable test error about from conversions being tail calls. (pivotal issue #181113110)
* add changelog entry
* fix OverloadsResolutionTest
* fix MethodDefinitionsTest
* fix DataflowAnalysisTest
* the field name for a from conversion must be 'that'. Fix remaining tests that aren't ExpressionUpdates vs. ExecutionUpdate behavioral changes
* fix ModuleThisToHereTest
* feat: suppress compilation errors from Builtins
* Revert "feat: suppress compilation errors from Builtins"
This reverts commit 63d069bd4f.
* fix tests
* fix: formatting
Co-authored-by: Dmitry Bushev <bushevdv@gmail.com>
Co-authored-by: Marcin Kostrzewa <marckostrzewa@gmail.com>
* Utility for mapping errors and warnings
* Imlpement By_Index
* Expose select_columns in InMem and DB. Need testing
* checkpoint: writing tests
* Fix minor issues, mock warning mapping for testing purposes
* Improve By_Index error handling
* A helper for testing problem handling
* More error handling
* docs
* changelog
* Fix matching test
* Add SQLite tests
* cleanup after test
* Rework problem handling
* small refactor
* add examples
* Add more test cases for regex matching
* Fix Regex.Patter.matches to match full string
* "Fix" tests
* Moving distinct to Map
* Mixed Type Comparable Wrapper
* Missing Bracket
Still an issue with `Integer` in the mixed vector test
* PR comments
* Use naive approach for mixed types
* Enable pending test
* Performance timing function
* Handle incomparable types cleanly
* Tidy up the time_execution function
* PR comments.
* Change log
- Add parser & handler in IDE for `executionContext/visualisationEvaluationFailed` message from Engine (fixes a developer console error "Failed to decode a notification: unknown variant `executionContext/visualisationEvaluationFailed`"). The contents of the error message will now be properly deserialized and printed to Dev Console with appropriate details.
- Fix a bug in an Enso code snippet used internally by the IDE for error visualizations preprocessing. The snippet was using not currently supported double-quote escaping in double-quote delimited strings. This lack of processing is actually a bug in the Engine, and it was reported to the Engine team, but changing the strings to single-quoted makes the snippet also more readable, so it sounds like a win anyway.
- A test is also added to the Engine CI, verifying that the snippet compiles & works correctly, to protect against similar regressions in the future.
Related: #2815
Some edits were not being sent by IDE to Language Server, resulting in 3003 "Invalid version" errors being returned by LangServ, and forcing full invalidation (resynchronization) of text contents in LangServ.
This change fixes such errors observed when opening a new project, creating a new project, or adding a new node to a project.
Fixes#3094
### Important Notes
The root cause showed up to be actually two separate issues, both of them reproduced by an "opening a new project" scenario:
1. The automatic addition of `import Standard.Visualization` line, [done internally when opening a new project in `controller::Project::initialize()`](c14a2d8169/app/gui/src/controller/project.rs (L137-L141)), was not reaching the Language Server. The cause of it was a race condition with [`self.model.subscribe()` in `Module::runner()`](c14a2d8169/app/gui/src/model/module/synchronized.rs (L268)). In particular, the addition of the import was executed before the subscription, which resulted in an edition notification being lost and not sent to LangServer. The fix employed for this is to make the `subscribe()` call synchronous during the initialization of a project, instead of scheduling it for a non-deterministic later time.
2. There was [a bug in `synchronized::Module::edit_for_snipped()`](7467efda59/app/gui/src/model/module/synchronized.rs (L362)), making it erroneously "optimize out" any code insertions detected by `TextEdit::from_prefix_postfix_differences()`. The fix employed for this was to improve the "optimizing out" condition, together with adding an accompanying test case verifying correct behavior (protecting against a future regression).
Additionally, as a drive-by improvement, some statements in `ParsedSourceFile<>::serialize()` were reordered, to make them better match how the actual contents of an .enso file are structured, and thus make it easier to read/analyze the code.
The old JS-based Welcome Screen was removed and replaced with the Rusty one.
Co-authored-by: Adam Obuchowicz <adam.obuchowicz@enso.org>
Co-authored-by: Adam Obuchowicz <adam.obuchowicz@luna-lang.org>
* refactor: remove invalid comment in ide/lib.rs
* refactor: current_project() returns Option
* refactor: create IDE controller without project
* refactor: handle missing project param in Cloud environment
* refactor: store project name in searcher
So no need in current_project call
* chore: apply rustfmt
* chore: fix tests
* refactor: rename maybe_project_name to project_name
* refactor: move project_name to BackendService::LanguageServer
* refactor: do not use early return in integration.rs
* refactor: use CloneCell instead of RefCell for current_project
* refactor: store model::Project in Searcher controller
* refactor: use expect instead of unwrap in searcher tests
* feat: add new_with_project_model constructor for desktop controller
It might be useful in tests
* chore: fix searcher tests