sapling/eden/fs/inodes/Overlay.h

65 lines
2.0 KiB
C
Raw Normal View History

/*
* Copyright (c) 2016, Facebook, Inc.
* All rights reserved.
*
* This source code is licensed under the BSD-style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*
*/
#pragma once
#include <folly/File.h>
#include <folly/Optional.h>
#include <folly/String.h>
#include <map>
#include "TreeInode.h"
#include "eden/utils/DirType.h"
#include "eden/utils/PathFuncs.h"
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
#include "eden/utils/PathMap.h"
namespace facebook {
namespace eden {
/** Manages the write overlay storage area.
*
* The overlay is where we store files that are not yet part of a snapshot.
*
* The contents of this storage layer are overlaid on top of the object store
* snapshot that is active in a given mount point.
*
* There is one overlay area associated with each eden client instance.
*
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
* We use the Overlay to manage mutating the structure of the checkout;
* each time we create or delete a directory entry, we do so through
* the overlay class.
*
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
* The Overlay class keeps track of the mutated tree; if we mutate some
* file "foo/bar/baz" then the Overlay records metadata about the list
* of files in the root, the list of files in "foo", the list of files in
* "foo/bar" and finally materializes "foo/bar/baz".
*/
class Overlay {
public:
explicit Overlay(AbsolutePathPiece localDir);
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
/** Returns the path to the root of the Overlay storage area */
const AbsolutePath& getLocalDir() const;
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
/** Returns the path to the root of the materialized tree.
* This is a sub-directory of the local dir */
const AbsolutePath& getContentDir() const;
void saveOverlayDir(RelativePathPiece path, const TreeInode::Dir* dir) const;
void removeOverlayDir(RelativePathPiece path) const;
folly::Optional<TreeInode::Dir> loadOverlayDir(RelativePathPiece path) const;
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
private:
/** path to ".eden/CLIENT/local" */
AbsolutePath localDir_;
eden: merge overlay into the inode objects Summary: It was starting to get pretty complex to manage locking across the inodes, filedata, overlay and soon the journal, so as a simplifying step, this folds data that was tracked by the overlay into the TreeInode itself. This is the first diff in a short series for this. This one: 1. Breaks the persistent overlay information, so shutting down eden and bringing it back up will lose your changes (to be restored in the following diff) 2. Allows deferring materialization of file data in more cases 3. Allows renaming dirs. The approach here is now to keep just one source of information about the directory contents; when we construct a TreeInode we import this data from the Tree and then apply mutations to it locally. Each inode can be mutated indepdently from others; we only need to lock the 1, 2 or 3 participating inodes in the various mutation operations. I'll tackle persistence of the mutations in the following diff, but the high level plan for that (to help understand this diff) is to always keep the directory inodes for mutations alive as inode objects. We make use of the canForget functionality introduced by D3774269 to ensure that these don't get evicted early. On startup we'll load this information from the overlay area. This model simplifies some of the processing around reading dirs and looking up children. Since the overlay data now tracks the appropriate tree or content hash we can be much more lazy at materializing data, especially in the rename case. For example, renaming "fbcode" to "fbcod" doesn't require us to recursively materialize the "fbcode" tree. Depends on D3653706 Reviewed By: simpkins Differential Revision: D3657894 fbshipit-source-id: d4561639845ca93b93487dc84bf11ad795927b1f
2016-09-10 02:56:00 +03:00
/** location of the materialized files/dirs */
AbsolutePath contentDir_;
};
}
}