graphql-engine/server/src-lib/Hasura/SQL/AnyBackend.hs

591 lines
23 KiB
Haskell
Raw Normal View History

{-# LANGUAGE Arrows #-}
{-# LANGUAGE UndecidableInstances #-}
module Hasura.SQL.AnyBackend
( AnyBackend
, liftTag
, mkAnyBackend
, mapBackend
, traverseBackend
, dispatchAnyBackend
, dispatchAnyBackend'
, dispatchAnyBackendArrow
, unpackAnyBackend
, composeAnyBackend
, runBackend
, parseAnyBackendFromJSON
, debugAnyBackendToJSON
) where
import Hasura.Prelude
[gardening] Introduce PartialArbitrary ### Context One of the ways we use the Backend type families is to use `Void` for all types for which a backend has no representation; this allows us to make some branches of our metadata and IR unrepresentable, making some functions total, where they would have to handle those unsupported cases otherwise. However, one of the biggest features, functions, cannot be cut that way, due to one of the constraints on `FunctionName b`: the metadata generator requires it to have an `Arbitrary` instance, and `Arbitrary` does not have a recovery mechanism which would allow for a `Void` instance... ### Description This PR solves this problem and removes the `Arbitrary` constraints in `Backend`. To do so, it introduces a new typeclass: `PartialArbitrary`, which is very similar to `Arbitrary`, except that it returns a `Maybe (Gen a)`, allowing for `Void` to have a well-formed instance. An `Arbitrary` instance for `Metadata` can easily be retrieved with `arbitrary = fromJust . partialArbitrary`. Furthermore, `PartialArbitrary` has a generic implementation, inspired by the one in `generic-arbitrary`, which automatically prunes branches that return `Nothing`, allowing to automatically construct most types. Types that don't have a type parameter and therefore can't contain `Void` can easily get their `PartialArbitrary` instance from `Arbitrary` with `partialArbitrary = Just arbitrary`. This is what a default overlappable instance provides. In conjunction with other cleanups in #1666, **this allows for Void function names**. ### Notes While this solves the stated problem, there are other possible solutions we could explore, such as: - switching from QuickCheck to a library that supports that kind of pruning natively - removing the test altogether, and dropping all notion of Arbitrary from the code There are also several things we could do with the Generator module: - move it out of RQL.DDL.Metadata, to some place that makes more sense - move ALL Arbitrary instances in the code to it, since nothing else uses Arbitrary - or, to the contrary, move all those Arbitrary instances alongside their types, to avoid an orphan instance https://github.com/hasura/graphql-engine-mono/pull/1667 GitOrigin-RevId: 88e304ea453840efb5c0d39294639b8b30eefb81
2021-07-06 01:03:48 +03:00
import Control.Arrow.Extended (ArrowChoice, arr, (|||))
import Data.Aeson
import Data.Aeson.Types (Parser)
import Data.Kind (Constraint, Type)
import Language.Haskell.TH hiding (Type)
import Test.QuickCheck.Arbitrary.Partial
import Hasura.Incremental (Cacheable)
import Hasura.SQL.Backend
import Hasura.SQL.TH
import Hasura.SQL.Tag
--------------------------------------------------------------------------------
-- Types and constraints
-- | This type is essentially an unlabeled box for types indexed by BackendType.
-- Given some type defined as 'data T (b :: BackendType) = ...', we can define
-- 'AnyBackend T' without mentioning any 'BackendType'.
--
-- This is useful for having generic containers of potentially different types
-- of T. For instance, @SourceCache@ is defined as a
-- @HashMap SourceName (AnyBackend SourceInfo)@.
--
-- This type is generated with Template Haskell to have one constructor per
-- backend. This declaration generates the following type:
--
-- data AnyBackend (i :: BackendType -> Type)
-- = PostgresValue (i 'Postgres)
-- | MSSQLValue (i 'MSSQL)
-- | ...
$(do
-- the kind of the type variable, expressed with a quote
varKind <- [t| BackendType -> Type |]
-- how to build a basic type: no UNPACK, no strict!, just a name
let normalType = (Bang NoSourceUnpackedness NoSourceStrictness,)
-- the name of the type variable
let typeVarName = mkName "i"
backendData
-- the name of the type
(mkName "AnyBackend")
-- the type variable
[KindedTV typeVarName varKind]
-- the constructor for each backend
(\b -> pure $ NormalC
-- the name of the constructor: `FooValue`
(getBackendValueName b)
-- one argument: `i 'Foo`
-- (we Apply a type Variable to a Promoted name)
[normalType $ AppT (VarT typeVarName) (getBackendTypeValue b)]
)
-- classes in the deriving clause
[ ''Generic ]
)
-- | Generates a constraint for all backends.
-- This Template Haskell expression generates the following constraint type:
--
-- type AllBackendsSatisfy (c :: BackendType -> Constraint) =
-- ( c 'Postgres
-- , c 'MSSQL
-- , ...
-- )
--
-- That is, given a class C, this creates the constraint that dictates that all
-- backend must satisfy C.
type AllBackendsSatisfy (c :: BackendType -> Constraint) =
$(do
-- the constraint for each backend: `c 'Foo`
-- (we Apply a type Variable to a Promoted name)
constraints <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "c") (getBackendTypeValue b)
-- transforms a list of constraints into a tuple of constraints
-- by folding the "type application" constructor:
--
-- > apply (,,) [c 'Foo, c 'Bar, c 'Baz]
-- > apply (c 'Foo,,) [c 'Bar, c 'Baz]
-- > apply (c 'Foo, c 'Bar,) [c 'Baz]
-- > apply (c 'Foo, c 'Bar, c 'Baz) []
-- = (c 'Foo, c 'Bar, c 'Baz)
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
-- | Generates a constraint for a generic type over all backends.
-- This Template Haskell expression generates the following constraint type:
--
-- type SatisfiesForAllBackends
-- (i :: BackendType -> Type)
-- (c :: Type -> Constraint)
-- = ( c (i 'Postgres)
-- , c (i 'MSSQL)
-- , ...
-- )
--
-- That is, given a type I and a class C, this creates the constraint that
-- dictates that for all backends b, @I b@ must satisfy C.
type SatisfiesForAllBackends
(i :: BackendType -> Type)
(c :: Type -> Constraint)
= $(do
-- the constraint for each backend: `c (i 'Foo)`
constraints <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "c") $ AppT (VarT $ mkName "i") (getBackendTypeValue b)
-- transforms a list of constraints into a tuple of constraints
-- by folding the type application constructor
-- by folding the "type application" constructor:
--
-- > apply (,,) [c (i 'Foo), c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo),,) [c (i 'Bar), c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar),) [c (i 'Baz)]
-- > apply (c (i 'Foo), c (i 'Bar), c (i 'Baz)) []
-- = (c (i 'Foo), c (i 'Bar), c (i 'Baz))
let tupleConstructor = TupleT $ length constraints
pure $ foldl AppT tupleConstructor constraints
)
--------------------------------------------------------------------------------
-- Functions on AnyBackend
-- | How to obtain a tag from a runtime value. This function is generated with
-- Template Haskell for each 'Backend'. The case switch looks like this:
--
-- Postgres -> PostgresValue PostgresTag
-- MSSQL -> MSSQLValue MSSQLTag
-- ...
liftTag :: BackendType -> AnyBackend BackendTag
liftTag t = $(backendCase
-- the expression on which we do the case switch
[| t |]
-- the pattern for a given backend: the backend type itself
(\(con :| args) -> pure $ ConP con [ConP a [] | a <- args])
-- the body for a given backend: creating and wrapping the tag
(\b -> [| $(pure $ ConE $ getBackendValueName b) $(pure $ ConE $ getBackendTagName b) |])
-- no default case: every constructor should be handled
Nothing
)
-- | Transforms an `AnyBackend i` into an `AnyBackend j`.
mapBackend
:: forall
(i :: BackendType -> Type)
(j :: BackendType -> Type)
. AnyBackend i
-> (forall b. i b -> j b)
-> AnyBackend j
mapBackend e f =
-- generates a case switch that, for each constructor, applies the provided function
-- case e of
-- FooValue x -> FooValue (f x)
-- BarValue x -> BarValue (f x)
$(do
-- we create a case match for each backend
matches <- forEachBackend \b -> do
-- the name of the constructor
let consName = getBackendValueName b
-- the patterrn we match: `FooValue x`
let matchPattern = ConP consName [VarP $ mkName "x"]
-- the body of the match: `FooValue (f x)`
matchBody <- [| $(pure $ ConE consName) (f x) |]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [| e |]
-- return the the expression of the case switch
pure $ CaseE caseExpr matches
)
-- | Traverse an `AnyBackend i` into an `f (AnyBackend j)`.
traverseBackend
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(j :: BackendType -> Type)
f
. (AllBackendsSatisfy c, Applicative f)
=> AnyBackend i
-> (forall b. c b => i b -> f (j b))
-> f (AnyBackend j)
traverseBackend e f =
-- generates a case switch that, for each constructor, applies the provided function
-- case e of
-- FooValue x -> FooValue <$> f x
-- BarValue x -> BarValue <$> f x
$(do
-- we create a case match for each backend
matches <- forEachBackend \b -> do
-- the name of the constructor
let consName = getBackendValueName b
-- the patterrn we match: `FooValue x`
let matchPattern = ConP consName [VarP $ mkName "x"]
-- the body of the match: `FooValue <$> f x`
matchBody <- [| $(pure $ ConE consName) <$> f x |]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [| e |]
-- return the the expression of the case switch
pure $ CaseE caseExpr matches
)
-- | Creates a new @AnyBackend i@ for a given backend @b@ by wrapping the given @i b@.
mkAnyBackend
:: forall
(b :: BackendType)
(i :: BackendType -> Type)
. HasTag b
=> i b
-> AnyBackend i
mkAnyBackend =
-- generates a case switch that associates a tag constructor to a value constructor
-- case backendTag @b of
-- FooTag -> FooValue
-- BarTag -> BarValue
$(backendCase [| backendTag @b |]
-- the pattern for a backend
(\b -> pure $ ConP (getBackendTagName b) [])
-- the body for a backend
(pure . ConE . getBackendValueName)
-- no default case
Nothing
)
-- | Dispatch a function to the value inside the @AnyBackend@, that does not
-- require bringing into scope a new class constraint.
runBackend
:: forall
(i :: BackendType -> Type)
(r :: Type)
. AnyBackend i
-> (forall (b :: BackendType). i b -> r)
-> r
runBackend b f = $(mkDispatch 'f 'b)
-- | Dispatch an existential using an universally quantified function while
-- also resolving a different constraint.
-- Use this to dispatch Backend* instances.
-- This is essentially a wrapper around 'runAnyBackend f . repackAnyBackend @c'.
dispatchAnyBackend
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. AllBackendsSatisfy c
=> AnyBackend i
-> (forall (b :: BackendType). c b => i b -> r)
-> r
dispatchAnyBackend e f = $(mkDispatch 'f 'e)
-- | Unlike 'dispatchAnyBackend', the expected constraint has a different kind.
-- Use for classes like 'Show', 'ToJSON', etc.
dispatchAnyBackend'
:: forall
(c :: Type -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. i `SatisfiesForAllBackends` c
=> AnyBackend i
-> (forall (b :: BackendType). c (i b) => i b -> r)
-> r
dispatchAnyBackend' e f = $(mkDispatch 'f 'e)
-- | Sometimes we need to run operations on two backends of the same type.
-- If the backends don't contain the same type, the given 'r' value is returned.
-- Otherwise, the function is called with the two wrapped values.
composeAnyBackend
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
. AllBackendsSatisfy c
=> (forall (b :: BackendType). c b => i b -> i b -> r)
-> AnyBackend i
-> AnyBackend i
-> r
-> r
composeAnyBackend f e1 e2 owise =
-- generates the following case expression for all backends:
-- (FooValue a, FooValue b) -> f a b
-- (BarValue a, BarValue b) -> f a b
-- ...
-- _ -> owise
$(backendCase [| (e1, e2) |]
-- the pattern for a given backend: `(FooValue a, FooValue b)`
( \b -> do
let valueCon n = pure $ ConP (getBackendValueName b) [VarP $ mkName n]
[p| ($(valueCon "a"), $(valueCon "b")) |]
)
-- the body for each backend: `f a b`
( const [| f a b |] )
-- the default case
( Just [| owise |] )
)
-- | Try to unpack the type of an existential.
-- Returns @Just x@ upon a succesful match, @Nothing@ otherwise.
unpackAnyBackend
:: forall
(b :: BackendType)
(i :: BackendType -> Type)
. HasTag b
=> AnyBackend i
-> Maybe (i b)
unpackAnyBackend exists =
-- generates the following case expression for all backends:
-- (FooTag, FooValue a) -> Just a
-- ...
-- _ -> Nothing
$(backendCase [| (backendTag @b, exists) |]
-- the pattern for a given backend
( \b -> do
let tagConstructor = pure $ ConP (getBackendTagName b) []
valConstructor = pure $ ConP (getBackendValueName b) [VarP $ mkName "a"]
[p| ($tagConstructor, $valConstructor) |]
)
-- the body for each backend
( const [| Just a |] )
-- the default case
( Just [| Nothing |] )
)
--------------------------------------------------------------------------------
-- Special case for arrows
-- Sadly, we CAN'T mix template haskell and arrow syntax... Meaning we can't
-- generate a `backendCase` within proc syntax. What we have to do instead is to
-- MANUALLY DESUGAR the arrow code, to manually construct the following
-- pipeline.
--
-- ┌────────────┐ ┌────────────────────┐ ┌───┐
-- │ AnyBackend ├─┬──────►│ Left PostgresValue ├───────────────►│ f ├────────┐
-- └────────────┘ │ └────────────────────┘ └───┘ │
-- │ │
-- │ ┌─────────────────────────┐ ┌───┐ │
-- └─┬────►│ Right (Left MSSQLValue) ├──────────►│ f ├─────┐ │
-- │ └─────────────────────────┘ └───┘ │ │
-- │ │ │
-- │ ┌─────────────────────────────────┐ ┌───┐ │ │
-- └─┬──►│ Right (Right (Left MongoValue)) ├───┤ f ├──┐ │ │
-- │ └─────────────────────────────────┘ └───┘ │ │ │
-- │ │ │ │
-- │ ┌───────────────────────────┐ ┌───┐ │ │ │ ┌───┐
-- └──►│ Right (Right (Right ...)) ├─────────┤ f ├──┴──┴──┴─►│ r │
-- └───────────────────────────┘ └───┘ └───┘
--
-- This is what, internally, GHC would translate an arrow case-switch into: the
-- only tool it has is:
-- (|||) :: a b d -> a c d -> a (Either b c) d
--
-- It must therefore encode the case switch as an arrow from the original value
-- to this tree of Either, and then coalesce them using (|||). This is what we
-- do here.
-- | First, we create a type to represent our complicated Either type. We use
-- `Void` as a terminating case for our recursion. This declaration creates the
-- following type:
--
-- type BackendChoice (i :: BackendType -> Type)
-- = Either (i 'Postgres)
-- ( Either (i 'MSSQL)
-- ( Either ...
-- Void
type BackendChoice (i :: BackendType -> Type) =
$(do
-- creates the type (i b) for each backend b
types <- forEachBackend \b ->
pure $ AppT (VarT $ mkName "i") (getBackendTypeValue b)
-- generate the either type by folding over that list
let appEither l r = [t| Either $(pure l) $(pure r) |]
foldrM appEither (ConT ''Void) types
)
-- | Spread a 'AnyBackend' into a 'BackendChoice'.
--
-- Given backends Foo, Bar, Baz, the type of `BackendChoice c` will be:
-- ( Either (c 'Foo)
-- ( Either (c 'Bar)
-- ( Either (c 'Baz)
-- Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- case e of
-- FooValue x -> Left x
-- BarValue x -> Right (Left x)
-- BazValue x -> Right (Right (Left x))
spreadChoice
:: forall
(i :: BackendType -> Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr)
=> arr (AnyBackend i) (BackendChoice i)
spreadChoice = arr $ \e ->
$(do
-- to each backend we match a 'BackendChoice' constructor
-- in order: Left, Right . Left, Right . Right . Left...
let choiceCons = iterate (UInfixE (ConE 'Right) (VarE '(.))) (ConE 'Left)
backendCons <- backendConstructors
-- we then construct the case match for each of them
matches <- for (zip backendCons choiceCons) \(b, c) -> do
-- name of the constructor: FooValue
let consName = getBackendValueName b
-- pattern of the match: `FooValue x`
let matchPattern = ConP consName [VarP $ mkName "x"]
-- expression of the match: applying the 'BackendChoice' constructor to x
matchBody <- [| $(pure c) x |]
pure $ Match matchPattern (NormalB matchBody) []
-- the expression on which we do the case
caseExpr <- [| e |]
-- we return the case expression
pure $ CaseE caseExpr matches
)
-- | Coalesce a 'BackendChoice' into a result, given an arrow from each
-- possibilty to a common result.
--
-- Given backends Foo, Bar, Baz, the type of `BackendChoice c` will be:
-- ( Either (c 'Foo)
-- ( Either (c 'Bar)
-- ( Either (c 'Baz)
-- Void )))
--
-- Accordingly, the following Template Haskell splice generates the following code:
--
-- ( arrow |||
-- ( arrow |||
-- ( arrow |||
-- absurd )))
coalesceChoice
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (i b) r)
-> arr (BackendChoice i) r
coalesceChoice arrow =
$(do
-- associate the arrow to each type
arrows <- forEachBackend $ const [| arrow |]
-- the default case of our fold is `arr absurd` for the terminating Void
baseCase <- [| arr absurd |]
-- how to combine two arrows using (|||)
let combine = \l r -> [| $(pure l) ||| $(pure r) |]
foldrM combine baseCase arrows
)
-- | Dispatch variant for use with arrow syntax. The universally quantified
-- dispatch function is an arrow instead. Since we can't express this using
-- Template Haskell, we instead generate the arrow by combining `spreadChoice`
-- and `coalesceChoice`.
dispatchAnyBackendArrow'
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (i b) r)
-> arr (AnyBackend i) r
dispatchAnyBackendArrow' arrow = spreadChoice >>> coalesceChoice @c arrow
-- | While dispatchAnyBackendArrow' is expressed over an `AnyBackend`, in
-- practice we need slightly more complex types. Specifically: the only call
-- site for 'dispatchAnyBackendArrow' uses a four element tuple containing an
-- 'AnyBackend'.
newtype BackendArrowTuple x i (b :: BackendType) = BackendArrowTuple { unTuple :: (i b, x) }
-- | Finally, we can do the dispatch on the four-elements tuple.
-- Here's what happens, step by step:
--
-- ┌─────────────────────────┐
-- │ (x, y, AnyBackend i, z) │
-- └─┬───────────────────────┘
-- │
-- │ cons
-- ▼
-- ┌────────────────────────────────────────┐ ┌─────────────────────────────┐
-- │ AnyBackend (BackendArrowTuple x y z i) │ ┌───► │ BackendArrowTuple x y z i b │
-- └─┬──────────────────────────────────────┘ │ └─┬───────────────────────────┘
-- │ │ │
-- │ spreadChoice │ │ arr unTuple
-- ▼ │ ▼
-- ┌───────────────────────────────────────────┐ │ ┌────────────────┐
-- │ BackendChoice (BackendArrowTuple x y z i) │ │ │ (x, y, i b, z) │
-- └─┬─────────────────────────────────────────┘ │ └─┬──────────────┘
-- │ │ │
-- │ coalesceChoice (arr unTuple >>> arrow) ◄─────┘ │ arrow
-- ▼ ▼
-- ┌───┐ ┌───┐
-- │ r │ │ r │
-- └───┘ └───┘
--
dispatchAnyBackendArrow
:: forall
(c :: BackendType -> Constraint)
(i :: BackendType -> Type)
(r :: Type)
(arr :: Type -> Type -> Type)
x
. (ArrowChoice arr, AllBackendsSatisfy c)
=> (forall b. c b => arr (i b, x) r)
-> arr (AnyBackend i, x) r
dispatchAnyBackendArrow arrow =
arr cons >>> dispatchAnyBackendArrow' @c (arr unTuple >>> arrow)
where
cons :: (AnyBackend i, x) -> AnyBackend (BackendArrowTuple x i)
cons (e, x) = mapBackend e \ib -> BackendArrowTuple (ib, x)
--------------------------------------------------------------------------------
-- JSON functions
-- | Attempts to parse an 'AnyBackend' from a JSON value, using the provided
-- backend information.
parseAnyBackendFromJSON
:: i `SatisfiesForAllBackends` FromJSON
=> BackendType
-> Value
-> Parser (AnyBackend i)
parseAnyBackendFromJSON backendKind value = do
-- generates the following case for all backends:
-- Foo -> FooValue <$> parseJSON value
-- Bar -> BarValue <$> parseJSON value
-- ...
$(backendCase [| backendKind |]
-- the pattern for a given backend
( \(con :| args) -> pure $ ConP con [ConP arg [] | arg <- args] )
-- the body for each backend
( \b -> do
let valueCon = pure $ ConE $ getBackendValueName b
[| $valueCon <$> parseJSON value |]
)
-- no default case
Nothing
)
-- | Outputs a debug JSON value from an 'AnyBackend'. This function must only be
-- used for debug purposes, as it has no way of inserting the backend kind in
-- the output, since there's no guarantee that the output will be an object.
debugAnyBackendToJSON
:: i `SatisfiesForAllBackends` ToJSON
=> AnyBackend i
-> Value
debugAnyBackendToJSON e = dispatchAnyBackend' @ToJSON e toJSON
--------------------------------------------------------------------------------
-- Instances for 'AnyBackend'
deriving instance i `SatisfiesForAllBackends` Show => Show (AnyBackend i)
deriving instance i `SatisfiesForAllBackends` Eq => Eq (AnyBackend i)
instance i `SatisfiesForAllBackends` Hashable => Hashable (AnyBackend i)
instance i `SatisfiesForAllBackends` Cacheable => Cacheable (AnyBackend i)
[gardening] Introduce PartialArbitrary ### Context One of the ways we use the Backend type families is to use `Void` for all types for which a backend has no representation; this allows us to make some branches of our metadata and IR unrepresentable, making some functions total, where they would have to handle those unsupported cases otherwise. However, one of the biggest features, functions, cannot be cut that way, due to one of the constraints on `FunctionName b`: the metadata generator requires it to have an `Arbitrary` instance, and `Arbitrary` does not have a recovery mechanism which would allow for a `Void` instance... ### Description This PR solves this problem and removes the `Arbitrary` constraints in `Backend`. To do so, it introduces a new typeclass: `PartialArbitrary`, which is very similar to `Arbitrary`, except that it returns a `Maybe (Gen a)`, allowing for `Void` to have a well-formed instance. An `Arbitrary` instance for `Metadata` can easily be retrieved with `arbitrary = fromJust . partialArbitrary`. Furthermore, `PartialArbitrary` has a generic implementation, inspired by the one in `generic-arbitrary`, which automatically prunes branches that return `Nothing`, allowing to automatically construct most types. Types that don't have a type parameter and therefore can't contain `Void` can easily get their `PartialArbitrary` instance from `Arbitrary` with `partialArbitrary = Just arbitrary`. This is what a default overlappable instance provides. In conjunction with other cleanups in #1666, **this allows for Void function names**. ### Notes While this solves the stated problem, there are other possible solutions we could explore, such as: - switching from QuickCheck to a library that supports that kind of pruning natively - removing the test altogether, and dropping all notion of Arbitrary from the code There are also several things we could do with the Generator module: - move it out of RQL.DDL.Metadata, to some place that makes more sense - move ALL Arbitrary instances in the code to it, since nothing else uses Arbitrary - or, to the contrary, move all those Arbitrary instances alongside their types, to avoid an orphan instance https://github.com/hasura/graphql-engine-mono/pull/1667 GitOrigin-RevId: 88e304ea453840efb5c0d39294639b8b30eefb81
2021-07-06 01:03:48 +03:00
instance i `SatisfiesForAllBackends` PartialArbitrary => PartialArbitrary (AnyBackend i)
instance i `SatisfiesForAllBackends` Arbitrary => Arbitrary (AnyBackend i) where
arbitrary = genericArbitrary