graphql-engine/server/src-lib/Hasura/Incremental.hs

Ignoring revisions in .git-blame-ignore-revs. Click here to bypass and see the normal blame view.

50 lines
1.5 KiB
Haskell
Raw Normal View History

-- | A simple implementation of /incremental build rules/, which can be used to avoid unnecessary
-- recomputation on incrementally-changing input. See 'Rule' for more details.
module Hasura.Incremental
( -- * The @Rule@ datatype
Rule,
Result,
build,
rebuild,
rebuildRule,
result,
-- * Abstract interface
ArrowDistribute (..),
ArrowCache (..),
-- * Fine-grained dependencies
Dependency,
Select (Selector),
selectD,
selectKeyD,
selectMaybeD,
Accesses,
-- * Cache invalidation
InvalidationKey,
initialInvalidationKey,
invalidate,
)
where
import Hasura.Incremental.Internal.Cache
import Hasura.Incremental.Internal.Dependency
import Hasura.Incremental.Internal.Rule
import Hasura.Incremental.Select
import Hasura.Prelude
-- | A simple helper type that can be used to implement explicit cache invalidation. Internally,
-- each 'InvalidationKey' is a counter; 'initialInvalidationKey' starts the counter at 0 and
-- 'invalidate' increments it by 1. Two 'InvalidationKey's are equal iff they have the same internal
-- count, so depending on an 'InvalidationKey' provides a mechanism to force portions of the build
-- process to be reexecuted by calling 'invalidate' before running the build.
newtype InvalidationKey = InvalidationKey Int
server: delete the `Cacheable` type class in favor of `Eq` What is the `Cacheable` type class about? ```haskell class Eq a => Cacheable a where unchanged :: Accesses -> a -> a -> Bool default unchanged :: (Generic a, GCacheable (Rep a)) => Accesses -> a -> a -> Bool unchanged accesses a b = gunchanged (from a) (from b) accesses ``` Its only method is an alternative to `(==)`. The added value of `unchanged` (and the additional `Accesses` argument) arises _only_ for one type, namely `Dependency`. Indeed, the `Cacheable (Dependency a)` instance is non-trivial, whereas every other `Cacheable` instance is completely boilerplate (and indeed either generated from `Generic`, or simply `unchanged _ = (==)`). The `Cacheable (Dependency a)` instance is the only one where the `Accesses` argument is not just passed onwards. The only callsite of the `unchanged` method is in the `ArrowCache (Rule m)` method. That is to say that the `Cacheable` type class is used to decide when we can re-use parts of the schema cache between Metadata operations. So what is the `Cacheable (Dependency a)` instance about? Normally, the output of a `Rule m a b` is re-used when the new input (of type `a`) is equal to the old one. But sometimes, that's too coarse: it might be that a certain `Rule m a b` only depends on a small part of its input of type `a`. A `Dependency` allows us to spell out what parts of `a` are being depended on, and these parts are recorded as values of types `Access a` in the state `Accesses`. If the input `a` changes, but not in a way that touches the recorded `Accesses`, then the output `b` of that rule can be re-used without recomputing. So now you understand _why_ we're passing `Accesses` to the `unchanged` method: `unchanged` is an equality check in disguise that just needs some additional context. But we don't need to pass `Accesses` as a function argument. We can use the `reflection` package to pass it as type-level context. So the core of this PR is that we change the instance declaration from ```haskell instance (Cacheable a) => Cacheable (Dependency a) where ``` to ```haskell instance (Given Accesses, Eq a) => Eq (Dependency a) where ``` and use `(==)` instead of `unchanged`. If you haven't seen `reflection` before: it's like a `MonadReader`, but it doesn't require a `Monad`. In order to pass the current `Accesses` value, instead of simply passing the `Accesses` as a function argument, we need to instantiate the `Given Accesses` context. We use the `give` method from the `reflection` package for that. ```haskell give :: forall r. Accesses -> (Given Accesses => r) -> r unchanged :: (Given Accesses => Eq a) => Accesses -> a -> a -> Bool unchanged accesses a b = give accesses (a == b) ``` With these three components in place, we can delete the `Cacheable` type class entirely. The remainder of this PR is just to remove the `Cacheable` type class and its instances. PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6877 GitOrigin-RevId: 7125f5e11d856e7672ab810a23d5bf5ad176e77f
2022-11-21 19:33:56 +03:00
deriving (Show, Eq, Ord)
initialInvalidationKey :: InvalidationKey
initialInvalidationKey = InvalidationKey 0
invalidate :: InvalidationKey -> InvalidationKey
invalidate (InvalidationKey n) = InvalidationKey (n + 1)