Idris2/libs/base/Data/Fin.idr

172 lines
4.9 KiB
Idris
Raw Normal View History

2020-05-18 15:59:07 +03:00
module Data.Fin
import public Data.Maybe
2020-05-18 15:59:07 +03:00
import Data.Nat
import Decidable.Equality.Core
2020-05-18 15:59:07 +03:00
2020-06-30 01:35:34 +03:00
%default total
2020-05-18 15:59:07 +03:00
||| Numbers strictly less than some bound. The name comes from "finite sets".
|||
||| It's probably not a good idea to use `Fin` for arithmetic, and they will be
||| exceedingly inefficient at run time.
||| @ n the upper bound
public export
data Fin : (n : Nat) -> Type where
FZ : Fin (S k)
FS : Fin k -> Fin (S k)
export
2020-07-05 20:52:16 +03:00
Uninhabited (Fin Z) where
2020-05-18 15:59:07 +03:00
uninhabited FZ impossible
uninhabited (FS f) impossible
2020-06-30 03:55:47 +03:00
export
Uninhabited (FZ = FS k) where
uninhabited Refl impossible
export
Uninhabited (FS k = FZ) where
uninhabited Refl impossible
2020-05-18 15:59:07 +03:00
export
2020-07-05 20:52:16 +03:00
fsInjective : FS m = FS n -> m = n
fsInjective Refl = Refl
2020-05-18 15:59:07 +03:00
export
2020-07-05 20:52:16 +03:00
Eq (Fin n) where
2020-05-18 15:59:07 +03:00
(==) FZ FZ = True
(==) (FS k) (FS k') = k == k'
(==) _ _ = False
||| Convert a Fin to a Nat
public export
finToNat : Fin n -> Nat
finToNat FZ = Z
2020-07-05 20:52:16 +03:00
finToNat (FS k) = S $ finToNat k
2020-05-18 15:59:07 +03:00
||| `finToNat` is injective
export
finToNatInjective : (fm : Fin k) -> (fn : Fin k) -> (finToNat fm) = (finToNat fn) -> fm = fn
2020-07-05 20:52:16 +03:00
finToNatInjective FZ FZ _ = Refl
finToNatInjective (FS _) FZ Refl impossible
finToNatInjective FZ (FS _) Refl impossible
2020-05-18 15:59:07 +03:00
finToNatInjective (FS m) (FS n) prf =
2020-07-05 20:52:16 +03:00
cong FS $ finToNatInjective m n $ succInjective (finToNat m) (finToNat n) prf
2020-05-18 15:59:07 +03:00
export
2020-07-05 20:52:16 +03:00
Cast (Fin n) Nat where
cast = finToNat
2020-05-18 15:59:07 +03:00
||| Convert a Fin to an Integer
public export
finToInteger : Fin n -> Integer
finToInteger FZ = 0
finToInteger (FS k) = 1 + finToInteger k
export
2020-07-05 20:52:16 +03:00
Cast (Fin n) Integer where
cast = finToInteger
2020-05-18 15:59:07 +03:00
||| Weaken the bound on a Fin by 1
public export
weaken : Fin n -> Fin (S n)
weaken FZ = FZ
2020-07-05 20:52:16 +03:00
weaken (FS k) = FS $ weaken k
2020-05-18 15:59:07 +03:00
||| Weaken the bound on a Fin by some amount
public export
weakenN : (n : Nat) -> Fin m -> Fin (m + n)
weakenN n FZ = FZ
2020-07-05 20:52:16 +03:00
weakenN n (FS f) = FS $ weakenN n f
2020-05-18 15:59:07 +03:00
2020-06-12 00:14:11 +03:00
||| Weaken the bound on a Fin using a constructive comparison
public export
weakenLTE : Fin n -> LTE n m -> Fin m
weakenLTE FZ LTEZero impossible
weakenLTE (FS _) LTEZero impossible
2020-07-05 20:52:16 +03:00
weakenLTE FZ (LTESucc _) = FZ
2020-06-12 00:14:11 +03:00
weakenLTE (FS x) (LTESucc y) = FS $ weakenLTE x y
2020-05-18 15:59:07 +03:00
||| Attempt to tighten the bound on a Fin.
||| Return `Left` if the bound could not be tightened, or `Right` if it could.
export
strengthen : {n : _} -> Fin (S n) -> Either (Fin (S n)) (Fin n)
2020-07-05 20:52:16 +03:00
strengthen {n = S _} FZ = Right FZ
strengthen {n = S _} (FS i) with (strengthen i)
strengthen (FS _) | Left x = Left $ FS x
strengthen (FS _) | Right x = Right $ FS x
2020-05-18 15:59:07 +03:00
strengthen f = Left f
||| Add some natural number to a Fin, extending the bound accordingly
||| @ n the previous bound
||| @ m the number to increase the Fin by
public export
shift : (m : Nat) -> Fin n -> Fin (m + n)
shift Z f = f
2020-07-05 20:52:16 +03:00
shift (S m) f = FS $ shift m f
2020-05-18 15:59:07 +03:00
||| The largest element of some Fin type
public export
last : {n : _} -> Fin (S n)
last {n=Z} = FZ
last {n=S _} = FS last
export
2020-07-05 20:52:16 +03:00
Ord (Fin n) where
2020-05-18 15:59:07 +03:00
compare FZ FZ = EQ
compare FZ (FS _) = LT
compare (FS _) FZ = GT
compare (FS x) (FS y) = compare x y
public export
natToFin : Nat -> (n : Nat) -> Maybe (Fin n)
2020-07-05 20:52:16 +03:00
natToFin Z (S _) = Just FZ
2020-05-18 15:59:07 +03:00
natToFin (S k) (S j)
= case natToFin k j of
Just k' => Just (FS k')
Nothing => Nothing
natToFin _ _ = Nothing
||| Convert an `Integer` to a `Fin`, provided the integer is within bounds.
||| @n The upper bound of the Fin
public export
integerToFin : Integer -> (n : Nat) -> Maybe (Fin n)
integerToFin x Z = Nothing -- make sure 'n' is concrete, to save reduction!
integerToFin x n = if x >= 0 then natToFin (fromInteger x) n else Nothing
||| Allow overloading of Integer literals for Fin.
||| @ x the Integer that the user typed
||| @ prf an automatically-constructed proof that `x` is in bounds
public export
fromInteger : (x : Integer) -> {n : Nat} ->
{auto prf : (IsJust (integerToFin x n))} ->
Fin n
fromInteger {n} x {prf} with (integerToFin x n)
fromInteger {n} x {prf = ItIsJust} | Just y = y
||| Convert an Integer to a Fin in the required bounds/
||| This is essentially a composition of `mod` and `fromInteger`
public export
restrict : (n : Nat) -> Integer -> Fin (S n)
restrict n val = let val' = assert_total (abs (mod val (cast (S n)))) in
-- reasoning about primitives, so we need the
-- 'believe_me'. It's fine because val' must be
-- in the right range
fromInteger {n = S n} val'
{prf = believe_me {a=IsJust (Just val')} ItIsJust}
--------------------------------------------------------------------------------
-- DecEq
--------------------------------------------------------------------------------
2020-06-30 01:35:34 +03:00
export
2020-07-05 20:52:16 +03:00
DecEq (Fin n) where
2020-05-18 15:59:07 +03:00
decEq FZ FZ = Yes Refl
2020-07-05 20:52:16 +03:00
decEq FZ (FS f) = No absurd
decEq (FS f) FZ = No absurd
2020-05-18 15:59:07 +03:00
decEq (FS f) (FS f')
= case decEq f f' of
Yes p => Yes $ cong FS p
2020-07-05 20:52:16 +03:00
No p => No $ p . fsInjective