* Allow functions to be marked for foreign export
This relies on the backend knowing what to do with such things, but the
general idea is to mark them with '%export "backend:exportedname"' then
'getCompileDataWith', given a back end, will search for every function
that needs to be exported, as well as every function starting from the
expression to be compiled. This will allow Idris functions to be called
from other languages, where a backend supports it.
This is hard to set up a test case for, for the moment, since no
backends actually do anything with it. So consider it a bit of a
placeholder for now.
* Add missing clause to Eq FnOpt
Thanks to @buzden
This is (for once) not a breaking changes, instead backends will need to opt in to this change, using the utilities in Compiler.NoMangle. See the js backend for an example of how to do this.
This is the first step to being able to use idris to create libraries usable by other languages.
* Only normalise a search goal if it's fast
While we do end up normalising it anyway on success, there might be
things blocking it that make the intermediate terms very big, so only do
it speculatively to see if it's quick.
* Get information about names in reflection
Currently this is only whether it's a function, or data or type
constructor. I expect more may be useful/possible.
* Implemented %noinline
* Removed trailing spaces.
* Added missing case in Reify FnOpt
* Added error message when both %inline and %noinline are set.
* Added test.
* Changed from perror to error
* Case tree/coverage checking shortcuts
We were calculating some things we didn't need - we can stop computing
the type of a case operator when we know the head, because that's all we
need for coverage checking. We can also abandon checking a left hand
side for coverage purposes if we encounter an empty type. Both of these
can save quite a bit of time in complex cases.
* Normalisation heuristic for pattern variables
If they get bit, fully normalise (like we do with case types) since it's
likely a big term with lots of applications will normalise a lot.
Instead of having UN & RF (& Hole in the near future & maybe even
more later e.g. operator names) we have a single UN constructor
that takes a UserName instead of a String.
UserName is (for now)
```idris
data UserName : Type where
Basic : String -> UserName -- default name constructor e.g. map
Field : String -> UserName -- field accessor e.g. .fst
Underscore : UserName -- no name e.g. _
```
This is extracted from the draft PR #1852 which is too big to easily
debug. Once this is working, I can go back to it.
Why:
* To implement robust cross-project go-to-definition in LSP
i.e you can jump to definition of any global name coming
from library dependencies, as well as from the local project files.
What it does:
* Modify `FC`s to carry `ModuleIdent` for .idr sources,
file name for .ipkg sources or nothing for interactive runs.
* Add `--install-with-src` to install the source code alongside
the ttc binaries. The source is installed into the same directory
as the corresponding ttc file. Installed sources are made read-only.
* As we install the sources pinned to the related ttc files we gain
the versioning of sources for free.
broaden what Names can be reflected and refied
I did not add the Names I wasn't sure how to test but have put placeholders
that produce clearer error messages.
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the underlying representation of
namespaces rather than say what we mean (using `isSuffixOf` to mean
`isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementation when
showing / pretty-printing namespaces
This PR introduces a `Namespace` newtype containing a list of strings.
Nested namespaces are still stored in reverse order but the exposed
interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the representation rather than say
what we mean (e.g. using `isSuffixOf` to mean `isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementations when
showing / pretty-printing namespaces
This introduces a Namespace newtype containing non-empty lists of
strings. Nested namespaces are still stored in reverse order but the
exposed interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
Add %runElab and start on scripts, although all they can do so far is
check a term. This does gives us, sort of, "template Idris" (as
demonstrated in test reflection002)
Don't get too excited yet - I want this in so that it doesn't get too
out of sync, but I still have to think about exactly how it's going to
work in practice.