awesome-machine-learning/books.md
Joseph Misiti 31213d34cf
Merge pull request #545 from tbrambor/master
Update R packages for visualization
2018-10-20 02:46:37 -04:00

99 lines
8.0 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

The following is a list of free, open source books on machine learning, statistics, data-mining, etc.
## Machine-Learning / Data Mining
* [Real World Machine Learning](https://www.manning.com/books/real-world-machine-learning) [Free Chapters]
* [An Introduction To Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Book + R Code
* [Elements of Statistical Learning](http://web.stanford.edu/~hastie/ElemStatLearn/) - Book
* [Computer Age Statistical Inference (CASI)](https://web.stanford.edu/~hastie/CASI_files/PDF/casi.pdf) ([Permalink as of October 2017](https://perma.cc/J8JG-ZVFW)) - Book
* [Probabilistic Programming & Bayesian Methods for Hackers](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Book + IPython Notebooks
* [Think Bayes](http://greenteapress.com/wp/think-bayes/) - Book + Python Code
* [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/mackay/itila/book.html)
* [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/chapters/)
* [Data Intensive Text Processing w/ MapReduce](http://lintool.github.io/MapReduceAlgorithms/)
* [Reinforcement Learning: - An Introduction](http://incompleteideas.net/book/the-book-2nd.html) ([Permalink to Nov 2017 Draft](https://perma.cc/83ER-64M3))
* [Mining Massive Datasets](http://infolab.stanford.edu/~ullman/mmds/book.pdf)
* [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf)
* [Pattern Recognition and Machine Learning](http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf)
* [Machine Learning & Bayesian Reasoning](http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf)
* [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan
* [A Probabilistic Theory of Pattern Recognition](http://www.szit.bme.hu/~gyorfi/pbook.pdf)
* [Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf)
* [Forecasting: principles and practice](https://www.otexts.org/fpp/)
* [Practical Artificial Intelligence Programming in Java](https://www.saylor.org/site/wp-content/uploads/2011/11/CS405-1.1-WATSON.pdf)
* [Introduction to Machine Learning](https://arxiv.org/pdf/0904.3664v1.pdf) - Amnon Shashua
* [Reinforcement Learning](http://www.intechopen.com/books/reinforcement_learning)
* [Machine Learning](http://www.intechopen.com/books/machine_learning)
* [A Quest for AI](http://ai.stanford.edu/~nilsson/QAI/qai.pdf)
* [Introduction to Applied Bayesian Statistics and Estimation for Social Scientists](http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.857&rep=rep1&type=pdf) - Scott M. Lynch
* [Bayesian Modeling, Inference and Prediction](https://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf)
* [A Course in Machine Learning](http://ciml.info/)
* [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/)
* [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage) Book+MatlabToolBox
* [R Programming for Data Science](https://leanpub.com/rprogramming)
* [Data Mining - Practical Machine Learning Tools and Techniques](http://cs.du.edu/~mitchell/mario_books/Data_Mining:_Practical_Machine_Learning_Tools_and_Techniques_-_2e_-_Witten_&_Frank.pdf) Book
* [Machine Learning with TensorFlow](https://www.manning.com/books/machine-learning-with-tensorflow) Early access book
* [Reactive Machine Learning Systems](https://www.manning.com/books/reactive-machine-learning-systems) Early access book
* [HandsOn Machine Learning with ScikitLearn and TensorFlow](http://index-of.es/Varios-2/Hands%20on%20Machine%20Learning%20with%20Scikit%20Learn%20and%20Tensorflow.pdf) - Aurélien Géron
* [R for Data Science: Import, Tidy, Transform, Visualize, and Model Data](http://r4ds.had.co.nz/) - Wickham and Grolemund. Great as introduction on how to use R.
* [Advanced R](http://adv-r.had.co.nz/) - Hadley Wickham. More advanced usage of R for programming.
## Deep-Learning
* [Deep Learning - An MIT Press book](http://www.deeplearningbook.org/)
* [Deep Learning with Python](https://www.manning.com/books/deep-learning-with-python)
* [Grokking Deep Learning](https://www.manning.com/books/grokking-deep-learning) Early access book
* [Deep Learning for Search](https://www.manning.com/books/deep-learning-for-search) Early access book
* [Deep Learning and the Game of Go](https://www.manning.com/books/deep-learning-and-the-game-of-go) Early access book
* [Machine Learning for Business](https://www.manning.com/books/machine-learning-for-business) Early access book
* [Deep Learning for Search](https://www.manning.com/books/deep-learning-for-search) Early access book
## Natural Language Processing
* [Coursera Course Book on NLP](http://www.cs.columbia.edu/~mcollins/notes-spring2013.html)
* [NLTK](http://www.nltk.org/book/)
* [NLP w/ Python](http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf)
* [Foundations of Statistical Natural Language Processing](http://nlp.stanford.edu/fsnlp/promo/)
* [Natural Language Processing in Action](https://www.manning.com/books/natural-language-processing-in-action) Early access book
## Information Retrieval
* [An Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf)
## Neural Networks
* [A Brief Introduction to Neural Networks](http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf)
* [Neural Networks and Deep Learning](http://neuralnetworksanddeeplearning.com/)
## Probability & Statistics
* [Think Stats](http://www.greenteapress.com/thinkstats/) - Book + Python Code
* [From Algorithms to Z-Scores](http://heather.cs.ucdavis.edu/probstatbook) - Book
* [The Art of R Programming](http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf) - Book (Not Finished)
* [Introduction to statistical thought](http://people.math.umass.edu/~lavine/Book/book.pdf)
* [Basic Probability Theory](http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf)
* [Introduction to probability](https://math.dartmouth.edu/~prob/prob/prob.pdf) - By Dartmouth College
* [Principle of Uncertainty](http://www.stat.cmu.edu/~kadane/principles.pdf)
* [Probability & Statistics Cookbook](http://statistics.zone/)
* [Advanced Data Analysis From An Elementary Point of View](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf) - Book
* [Introduction to Probability](http://athenasc.com/probbook.html) - Book and course by MIT
* [The Elements of Statistical Learning: Data Mining, Inference, and Prediction.](https://web.stanford.edu/~hastie/ElemStatLearn/) - Book
* [An Introduction to Statistical Learning with Applications in R](http://www-bcf.usc.edu/~gareth/ISL/) - Book
* [Introduction to Probability and Statistics Using R](http://ipsur.r-forge.r-project.org/book/download/IPSUR.pdf) - Book
* [Advanced R Programming](http://adv-r.had.co.nz) - Book
* [Practical Regression and Anova using R](http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf) - Book
* [R practicals](http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/practicalsBookNoAns.pdf) - Book
* [The R Inferno](http://www.burns-stat.com/pages/Tutor/R_inferno.pdf) - Book
* [Probability Theory: The Logic of Science](https://bayes.wustl.edu/etj/prob/book.pdf) - By Jaynes
## Linear Algebra
* [The Matrix Cookbook](https://www.math.uwaterloo.ca/~hwolkowi/matrixcookbook.pdf)
* [Linear Algebra by Shilov](https://cosmathclub.files.wordpress.com/2014/10/georgi-shilov-linear-algebra4.pdf)
* [Linear Algebra Done Wrong](http://www.math.brown.edu/~treil/papers/LADW/LADW.html)
* [Linear Algebra, Theory, and Applications](https://math.byu.edu/~klkuttle/Linearalgebra.pdf)
* [Convex Optimization](http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf)
* [Applied Numerical Computing](http://www.seas.ucla.edu/~vandenbe/ee133a.html)
* [Applied Numerical Linear Algebra](http://egrcc.github.io/docs/math/applied-numerical-linear-algebra.pdf)