awesome-machine-learning/books.md

80 lines
5.9 KiB
Markdown

The following is a list of free, open source books on machine learning, statistics, data-mining, etc.
## Machine-Learning / Data Mining
* [An Introduction To Statistical Learning](http://www-bcf.usc.edu/~gareth/ISL/) - Book + R Code
* [Elements of Statistical Learning](http://statweb.stanford.edu/~tibs/ElemStatLearn/) - Book
* [Probabilistic Programming & Bayesian Methods for Hackers](http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/) - Book + IPython Notebooks
* [Think Bayes](http://www.greenteapress.com/thinkbayes/) - Book + Python Code
* [Information Theory, Inference, and Learning Algorithms](http://www.inference.phy.cam.ac.uk/mackay/itila/book.html)
* [Gaussian Processes for Machine Learning](http://www.gaussianprocess.org/gpml/chapters/)
* [Data Intensive Text Processing w/ MapReduce](http://lintool.github.io/MapReduceAlgorithms/)
* [Reinforcement Learning: - An Introduction](http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html)
* [Mining Massive Datasets](http://infolab.stanford.edu/~ullman/mmds/book.pdf)
* [A First Encounter with Machine Learning](https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf)
* [Pattern Recognition and Machine Learning](http://www.hua.edu.vn/khoa/fita/wp-content/uploads/2013/08/Pattern-Recognition-and-Machine-Learning-Christophe-M-Bishop.pdf)
* [Machine Learning & Bayesian Reasoning](http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf)
* [Introduction to Machine Learning](http://alex.smola.org/drafts/thebook.pdf) - Alex Smola and S.V.N. Vishwanathan
* [A Probabilistic Theory of Pattern Recognition](http://www.szit.bme.hu/~gyorfi/pbook.pdf)
* [Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf)
* [Forecasting: principles and practice](http://otexts.com/fpp/)
* [Practical Artificial Intelligence Programming in Java](http://www.markwatson.com/opencontent_data/JavaAI3rd.pdf)
* [Introduction to Machine Learning](http://arxiv.org/pdf/0904.3664v1.pdf) - Amnon Shashua
* [Reinforcement Learning](http://www.intechopen.com/books/reinforcement_learning)
* [Machine Learning](http://www.intechopen.com/books/machine_learning)
* [A Quest for AI](http://ai.stanford.edu/~nilsson/QAI/qai.pdf)
* [Introduction to Applied Bayesian
Statistics and Estimation for
Social Scientists](http://faculty.ksu.edu.sa/69424/us_BOOk/Introduction%20to%20Applied%20Bayesian%20Statistics.pdf)
* [Bayesian Modeling, Inference
and Prediction](http://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf)
* [A Course in Machine Learning](http://ciml.info/)
* [Machine Learning, Neural and Statistical Classification](http://www1.maths.leeds.ac.uk/~charles/statlog/)
* [Bayesian Reasoning and Machine Learning](http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage) Book+MatlabToolBox
* [R Programming for Data Science](https://leanpub.com/rprogramming)
## Natural Language Processing
* [Coursera Course Book on NLP](http://www.cs.columbia.edu/~mcollins/notes-spring2013.html)
* [NLTK](http://www.nltk.org/book/)
* [NLP w/ Python](http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf)
* [Foundations of Statistical Natural Language Processing](http://nlp.stanford.edu/fsnlp/promo/)
## Information Retrieval
* [An Introduction to Information Retrieval](http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf)
## Neural Networks
* [A Brief Introduction to Neural Networks](http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf)
## Probability & Statistics
* [Think Stats](http://www.greenteapress.com/thinkstats/) - Book + Python Code
* [From Algorithms to Z-Scores](http://heather.cs.ucdavis.edu/probstatbook) - Book
* [The Art of R Programming](http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf) - Book (Not Finished)
* [All of Statistics](http://www.ucl.ac.uk/~rmjbale/Stat/wasserman2.pdf)
* [Introduction to statistical thought](https://www.math.umass.edu/~lavine/Book/book.pdf)
* [Basic Probability Theory](http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf)
* [Introduction to probability](http://math.dartmouth.edu/~prob/prob/prob.pdf) - By Dartmouth College
* [Principle of Uncertainty](http://uncertainty.stat.cmu.edu/wp-content/uploads/2011/05/principles-of-uncertainty.pdf)
* [Probability & Statistics Cookbook](http://matthias.vallentin.net/probability-and-statistics-cookbook/)
* [Advanced Data Analysis From An Elementary Point of View](http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf)
* [Introduction to Probability](http://athenasc.com/probbook.html) - Book and course by MIT
* [The Elements of Statistical Learning: Data Mining, Inference, and Prediction.](http://statweb.stanford.edu/~tibs/ElemStatLearn/) -Book
* [An Introduction to Statistical Learning with Applications in R](http://www-bcf.usc.edu/~gareth/ISL/) - Book
* [Learning Statistics Using R](http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/)
* [Introduction to Probability and Statistics Using R](https://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf) - Book
* [Advanced R Programming](http://adv-r.had.co.nz) - Book
* [Practical Regression and Anova using R](http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf) - Book
* [R practicals](http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/practicalsBookNoAns.pdf) - Book
* [The R Inferno](http://www.burns-stat.com/pages/Tutor/R_inferno.pdf) - Book
## Linear Algebra
* [Linear Algebra Done Wrong](http://www.math.brown.edu/~treil/papers/LADW/book.pdf)
* [Linear Algebra, Theory, and Applications](https://math.byu.edu/~klkuttle/Linearalgebra.pdf)
* [Convex Optimization](http://www.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf)
* [Applied Numerical Computing](http://www.seas.ucla.edu/~vandenbe/103/reader.pdf)
* [Applied Numerical Linear Algebra](http://uqu.edu.sa/files2/tiny_mce/plugins/filemanager/files/4281667/hamdy/hamdy1/cgfvnv/hamdy2/h1/h2/h3/h4/h5/h6/Applied%20Numerical%20Linear%20.pdf)