the script now calculates the p-value and confidence intervals not only using BLEU, but also the NIST score;

improved confidence interval representation (avg+-stddev);

fixed bugs



git-svn-id: https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk@3345 1f5c12ca-751b-0410-a591-d2e778427230
This commit is contained in:
mphi 2010-06-22 20:17:42 +00:00
parent a21c9bff68
commit 1f6e9b488b

View File

@ -8,7 +8,9 @@
#
# Author: Mark Fishel, fishel@ut.ee
#
# 22.10: altered algorithm according to (Riezler and Maxwell 2005 @ MTSE'05), now computes p-value
# 22.10.2008: altered algorithm according to (Riezler and Maxwell 2005 @ MTSE'05), now computes p-value
#
# 23.01.2010: added NIST p-value and interval computation
###############################################
use strict;
@ -16,7 +18,7 @@ use strict;
#constants
my $TIMES_TO_REPEAT_SUBSAMPLING = 1000;
my $SUBSAMPLE_SIZE = 0; # if 0 then subsample size is equal to the whole set
my $MAX_NGRAMS_FOR_BLEU = 4;
my $MAX_NGRAMS = 4;
#checking cmdline argument consistency
if (@ARGV < 3) {
@ -34,6 +36,7 @@ print "reading data; " . `date`;
#read all data
my $data = readAllData(@ARGV);
my $verbose = $ARGV[3];
#calculate each sentence's contribution to BP and ngram precision
print "performing preliminary calculations (hypothesis 1); " . `date`;
@ -43,74 +46,113 @@ print "performing preliminary calculations (hypothesis 2); " . `date`;
preEvalHypo($data, "hyp2");
#start comparing
print "comparing hypotheses; " . `date`;
print "comparing hypotheses -- this may take some time; " . `date`;
my @subSampleBleuDiffArr;
my @subSampleBleu1Arr;
my @subSampleBleu2Arr;
bootstrap_report("BLEU", \&getBleu);
bootstrap_report("NIST", \&getNist);
#applying sampling
for (1..$TIMES_TO_REPEAT_SUBSAMPLING) {
my $subSampleIndices = drawWithReplacement($data->{size}, ($SUBSAMPLE_SIZE? $SUBSAMPLE_SIZE: $data->{size}));
#####
#
#####
sub bootstrap_report {
my $title = shift;
my $proc = shift;
my $bleu1 = getBleu($data->{refs}, $data->{hyp1}, $subSampleIndices);
my $bleu2 = getBleu($data->{refs}, $data->{hyp2}, $subSampleIndices);
push @subSampleBleuDiffArr, abs($bleu2 - $bleu1);
push @subSampleBleu1Arr, $bleu1;
push @subSampleBleu2Arr, $bleu2;
if ($_ % int($TIMES_TO_REPEAT_SUBSAMPLING / 100) == 0) {
print "$_ / $TIMES_TO_REPEAT_SUBSAMPLING " . `date`;
}
my ($subSampleScoreDiffArr, $subSampleScore1Arr, $subSampleScore2Arr) = bootstrap_pass($proc);
my $realScore1 = &$proc($data->{refs}, $data->{hyp1});
my $realScore2 = &$proc($data->{refs}, $data->{hyp2});
my $scorePValue = bootstrap_pvalue($subSampleScoreDiffArr, $realScore1, $realScore2);
my ($scoreAvg1, $scoreVar1) = bootstrap_interval($subSampleScore1Arr);
my ($scoreAvg2, $scoreVar2) = bootstrap_interval($subSampleScore2Arr);
print "\n---=== $title score ===---\n";
print "actual score of hypothesis 1: $realScore1\n";
print "95% confidence interval for hypothesis 1 score: $scoreAvg1 +- $scoreVar1\n-----\n";
print "actual score of hypothesis 1: $realScore2\n";
print "95% confidence interval for hypothesis 2 score: $scoreAvg2 +- $scoreVar2\n-----\n";
print "Assuming that essentially the same system generated the two hypothesis translations (null-hypothesis),\n";
print "the probability of actually getting them (p-value) is: $scorePValue.\n";
}
#get subsample bleu difference mean
my $averageSubSampleBleuDiff = 0;
for my $subSampleDiff (@subSampleBleuDiffArr) {
$averageSubSampleBleuDiff += $subSampleDiff;
}
$averageSubSampleBleuDiff /= $TIMES_TO_REPEAT_SUBSAMPLING;
print "average subsample bleu: $averageSubSampleBleuDiff " . `date`;
#calculating p-value
my $count = 0;
my $realBleu1 = getBleu($data->{refs}, $data->{hyp1});
my $realBleu2 = getBleu($data->{refs}, $data->{hyp2});
print "actual BLEU of hypothesis 1: $realBleu1\n";
print "actual BLEU of hypothesis 1: $realBleu2\n";
my $realBleuDiff = abs($realBleu2 - $realBleu1);
for my $subSampleDiff (@subSampleBleuDiffArr) {
my $op;
#####
#
#####
sub bootstrap_pass {
my $scoreFunc = shift;
if ($subSampleDiff - $averageSubSampleBleuDiff >= $realBleuDiff) {
$count++;
$op = ">=";
}
else {
$op = "< ";
my @subSampleDiffArr;
my @subSample1Arr;
my @subSample2Arr;
#applying sampling
for (1..$TIMES_TO_REPEAT_SUBSAMPLING) {
my $subSampleIndices = drawWithReplacement($data->{size}, ($SUBSAMPLE_SIZE? $SUBSAMPLE_SIZE: $data->{size}));
my $score1 = &$scoreFunc($data->{refs}, $data->{hyp1}, $subSampleIndices);
my $score2 = &$scoreFunc($data->{refs}, $data->{hyp2}, $subSampleIndices);
push @subSampleDiffArr, abs($score2 - $score1);
push @subSample1Arr, $score1;
push @subSample2Arr, $score2;
}
#print "$subSampleDiff - $averageSubSampleBleuDiff $op $realBleuDiff\n";
return (\@subSampleDiffArr, \@subSample1Arr, \@subSample2Arr);
}
my $result = $count / $TIMES_TO_REPEAT_SUBSAMPLING;
#####
#
#####
sub bootstrap_pvalue {
my $subSampleDiffArr = shift;
my $realScore1 = shift;
my $realScore2 = shift;
my $realDiff = abs($realScore2 - $realScore1);
#get subsample difference mean
my $averageSubSampleDiff = 0;
print "Assuming that essentially the same system generated the two hypothesis translations (null-hypothesis),\n";
print "the probability of actually getting them (p-value) is: $result.\n";
for my $subSampleDiff (@$subSampleDiffArr) {
$averageSubSampleDiff += $subSampleDiff;
}
my @sorted1 = sort @subSampleBleu1Arr;
my @sorted2 = sort @subSampleBleu2Arr;
$averageSubSampleDiff /= $TIMES_TO_REPEAT_SUBSAMPLING;
print "95% confidence interval for hypothesis 1: " . $sorted1[25] . " -- " . $sorted1[924] . "\n";
print "95% confidence interval for hypothesis 2: " . $sorted2[25] . " -- " . $sorted2[924] . "\n";
#calculating p-value
my $count = 0;
my $realScoreDiff = abs($realScore2 - $realScore1);
for my $subSampleDiff (@$subSampleDiffArr) {
if ($subSampleDiff - $averageSubSampleDiff >= $realDiff) {
$count++;
}
}
return $count / $TIMES_TO_REPEAT_SUBSAMPLING;
}
#####
#
#####
sub bootstrap_interval {
my $subSampleArr = shift;
my @sorted = sort @$subSampleArr;
my $lowerIdx = int($TIMES_TO_REPEAT_SUBSAMPLING / 40);
my $higherIdx = $TIMES_TO_REPEAT_SUBSAMPLING - $lowerIdx - 1;
my $lower = $sorted[$lowerIdx];
my $higher = $sorted[$higherIdx];
my $diff = $higher - $lower;
return ($lower + 0.5 * $diff, 0.5 * $diff);
}
#####
# read 2 hyp and 1 to \infty ref data files
@ -131,6 +173,7 @@ sub readAllData {
#reading reference(s) and checking for matching sizes
$result{refs} = [];
$result{ngramCounts} = { };
my $i = 0;
for my $refFile (@refFiles) {
@ -141,12 +184,49 @@ sub readAllData {
die ("ERROR: ref set $i size doesn't match the size of hyp sets");
}
updateCounts($result{ngramCounts}, $refDataX);
push @{$result{refs}}, $refDataX;
}
return \%result;
}
#####
#
#####
sub updateCounts {
my ($countHash, $refData) = @_;
for my $snt(@$refData) {
my $size = scalar @{$snt->{words}};
$countHash->{""} += $size;
for my $order(1..$MAX_NGRAMS) {
my $ngram;
for my $i (0..($size-$order)) {
$ngram = join(" ", @{$snt->{words}}[$i..($i + $order - 1)]);
$countHash->{$ngram}++;
}
}
}
}
#####
#
#####
sub ngramInfo {
my ($data, $ngram) = @_;
my @nwords = split(/ /, $ngram);
pop @nwords;
my $smallGram = join(" ", @nwords);
return log($data->{ngramCounts}->{$smallGram} / $data->{ngramCounts}->{$ngram}) / log(2.0);
}
#####
# read sentences from file
#####
@ -172,41 +252,64 @@ sub preEvalHypo {
my $data = shift;
my $hypId = shift;
for my $lineIdx (0..($data->{size} - 1)) {
preEvalHypoSnt($data, $hypId, $lineIdx);
}
}
#####
#
#####
sub preEvalHypoSnt {
my ($data, $hypId, $lineIdx) = @_;
my ($correctNgramCounts, $totalNgramCounts);
my ($refNgramCounts, $hypNgramCounts);
my ($coocNgramInfoSum, $totalNgramAmt);
for my $lineIdx (0..($data->{size} - 1)) {
my $hypSnt = $data->{$hypId}->[$lineIdx];
my $hypSnt = $data->{$hypId}->[$lineIdx];
#update total hyp len
$hypSnt->{hyplen} = scalar @{$hypSnt->{words}};
#update total ref len with closest current ref len
$hypSnt->{reflen} = getClosestLength($data->{refs}, $lineIdx, $hypSnt->{hyplen});
$hypSnt->{avgreflen} = getAvgLength($data->{refs}, $lineIdx);
$hypSnt->{correctNgrams} = [];
$hypSnt->{totalNgrams} = [];
#update ngram precision for each n-gram order
for my $order (1..$MAX_NGRAMS) {
#hyp ngrams
$hypNgramCounts = groupNgrams($hypSnt, $order);
#update total hyp len
$hypSnt->{hyplen} = scalar @{$hypSnt->{words}};
#ref ngrams
$refNgramCounts = groupNgramsMultiSrc($data->{refs}, $lineIdx, $order);
#update total ref len with closest current ref len
$hypSnt->{reflen} = getClosestLength($data->{refs}, $lineIdx, $hypSnt->{hyplen});
$correctNgramCounts = 0;
$totalNgramCounts = 0;
$coocNgramInfoSum = 0;
$totalNgramAmt = 0;
my $coocUpd;
$hypSnt->{correctNgrams} = [];
$hypSnt->{totalNgrams} = [];
#update ngram precision for each n-gram order
for my $order (1..$MAX_NGRAMS_FOR_BLEU) {
#hyp ngrams
$hypNgramCounts = groupNgrams($hypSnt, $order);
#correct, total
for my $ngram (keys %$hypNgramCounts) {
$coocUpd = min($hypNgramCounts->{$ngram}, $refNgramCounts->{$ngram});
$correctNgramCounts += $coocUpd;
$totalNgramCounts += $hypNgramCounts->{$ngram};
#ref ngrams
$refNgramCounts = groupNgramsMultiSrc($data->{refs}, $lineIdx, $order);
$correctNgramCounts = 0;
$totalNgramCounts = 0;
#correct, total
for my $ngram (keys %$hypNgramCounts) {
$correctNgramCounts += min($hypNgramCounts->{$ngram}, $refNgramCounts->{$ngram});
$totalNgramCounts += $hypNgramCounts->{$ngram};
if ($coocUpd > 0) {
$coocNgramInfoSum += ngramInfo($data, $ngram);
}
$hypSnt->{correctNgrams}->[$order] = $correctNgramCounts;
$hypSnt->{totalNgrams}->[$order] = $totalNgramCounts;
$totalNgramAmt++;
}
$hypSnt->{correctNgrams}->[$order] = $correctNgramCounts;
$hypSnt->{totalNgrams}->[$order] = $totalNgramCounts;
$hypSnt->{ngramNistInfoSum}->[$order] = $coocNgramInfoSum;
$hypSnt->{ngramNistCount}->[$order] = $totalNgramAmt;
}
}
@ -225,6 +328,56 @@ sub drawWithReplacement {
return \@result;
}
#####
#
#####
sub getNist {
my ($refs, $hyp, $idxs) = @_;
#default value for $idxs
unless (defined($idxs)) {
$idxs = [0..((scalar @$hyp) - 1)];
}
#vars
my ($hypothesisLength, $referenceLength) = (0, 0);
my (@infosum, @totalamt);
#gather info from each line
for my $lineIdx (@$idxs) {
my $hypSnt = $hyp->[$lineIdx];
#update total hyp len
$hypothesisLength += $hypSnt->{hyplen};
#update total ref len with closest current ref len
$referenceLength += $hypSnt->{avgreflen};
#update ngram precision for each n-gram order
for my $order (1..$MAX_NGRAMS) {
$infosum[$order] += $hypSnt->{ngramNistInfoSum}->[$order];
$totalamt[$order] += $hypSnt->{ngramNistCount}->[$order];
}
}
my $toplog = log($hypothesisLength / $referenceLength);
my $btmlog = log(2.0/3.0);
#compose nist score
my $brevityPenalty = ($hypothesisLength > $referenceLength)? 1.0: exp(log(0.5) * $toplog * $toplog / ($btmlog * $btmlog));
my $sum = 0;
for my $order (1..$MAX_NGRAMS) {
$sum += $infosum[$order]/$totalamt[$order];
}
my $result = $sum * $brevityPenalty;
return $result;
}
#####
# refs: arrayref of different references, reference = array of lines, line = array of words, word = string
# hyp: arrayref of lines of hypothesis translation, line = array of words, word = string
@ -254,7 +407,7 @@ sub getBleu {
$referenceLength += $hypSnt->{reflen};
#update ngram precision for each n-gram order
for my $order (1..$MAX_NGRAMS_FOR_BLEU) {
for my $order (1..$MAX_NGRAMS) {
$correctNgramCounts[$order] += $hypSnt->{correctNgrams}->[$order];
$totalNgramCounts[$order] += $hypSnt->{totalNgrams}->[$order];
}
@ -265,11 +418,28 @@ sub getBleu {
my $logsum = 0;
for my $order (1..$MAX_NGRAMS_FOR_BLEU) {
for my $order (1..$MAX_NGRAMS) {
$logsum += safeLog($correctNgramCounts[$order] / $totalNgramCounts[$order]);
}
return $brevityPenalty * exp($logsum / $MAX_NGRAMS_FOR_BLEU);
return $brevityPenalty * exp($logsum / $MAX_NGRAMS);
}
#####
#
#####
sub getAvgLength {
my ($refs, $lineIdx) = @_;
my $result = 0;
my $count = 0;
for my $ref (@$refs) {
$result += scalar @{$ref->[$lineIdx]->{words}};
$count++;
}
return $result / $count;
}
#####
@ -366,3 +536,9 @@ sub max {
return ($a > $b)? $a: $b;
}
sub poww {
my ($a, $b) = @_;
return exp($b * log($a));
}