mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-06 19:49:41 +03:00
1f6e9b488b
improved confidence interval representation (avg+-stddev); fixed bugs git-svn-id: https://mosesdecoder.svn.sourceforge.net/svnroot/mosesdecoder/trunk@3345 1f5c12ca-751b-0410-a591-d2e778427230
545 lines
12 KiB
Perl
Executable File
545 lines
12 KiB
Perl
Executable File
#!/usr/bin/perl
|
|
|
|
###############################################
|
|
# An implementation of paired bootstrap resampling for testing the statistical
|
|
# significance of the difference between two systems from (Koehn 2004 @ EMNLP)
|
|
#
|
|
# Usage: ./compare-hypotheses-with-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ]
|
|
#
|
|
# Author: Mark Fishel, fishel@ut.ee
|
|
#
|
|
# 22.10.2008: altered algorithm according to (Riezler and Maxwell 2005 @ MTSE'05), now computes p-value
|
|
#
|
|
# 23.01.2010: added NIST p-value and interval computation
|
|
###############################################
|
|
|
|
use strict;
|
|
|
|
#constants
|
|
my $TIMES_TO_REPEAT_SUBSAMPLING = 1000;
|
|
my $SUBSAMPLE_SIZE = 0; # if 0 then subsample size is equal to the whole set
|
|
my $MAX_NGRAMS = 4;
|
|
|
|
#checking cmdline argument consistency
|
|
if (@ARGV < 3) {
|
|
print STDERR "Usage: ./bootstrap-hypothesis-difference-significance.pl hypothesis_1 hypothesis_2 reference_1 [ reference_2 ... ]\n";
|
|
|
|
unless ($ARGV[0] =~ /^(--help|-help|-h|-\?|\/\?|--usage|-usage)$/) {
|
|
die("\nERROR: not enough arguments");
|
|
}
|
|
|
|
exit 1;
|
|
}
|
|
|
|
print "reading data; " . `date`;
|
|
|
|
#read all data
|
|
my $data = readAllData(@ARGV);
|
|
|
|
my $verbose = $ARGV[3];
|
|
|
|
#calculate each sentence's contribution to BP and ngram precision
|
|
print "performing preliminary calculations (hypothesis 1); " . `date`;
|
|
preEvalHypo($data, "hyp1");
|
|
|
|
print "performing preliminary calculations (hypothesis 2); " . `date`;
|
|
preEvalHypo($data, "hyp2");
|
|
|
|
#start comparing
|
|
print "comparing hypotheses -- this may take some time; " . `date`;
|
|
|
|
bootstrap_report("BLEU", \&getBleu);
|
|
bootstrap_report("NIST", \&getNist);
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub bootstrap_report {
|
|
my $title = shift;
|
|
my $proc = shift;
|
|
|
|
my ($subSampleScoreDiffArr, $subSampleScore1Arr, $subSampleScore2Arr) = bootstrap_pass($proc);
|
|
|
|
my $realScore1 = &$proc($data->{refs}, $data->{hyp1});
|
|
my $realScore2 = &$proc($data->{refs}, $data->{hyp2});
|
|
|
|
my $scorePValue = bootstrap_pvalue($subSampleScoreDiffArr, $realScore1, $realScore2);
|
|
|
|
my ($scoreAvg1, $scoreVar1) = bootstrap_interval($subSampleScore1Arr);
|
|
my ($scoreAvg2, $scoreVar2) = bootstrap_interval($subSampleScore2Arr);
|
|
|
|
print "\n---=== $title score ===---\n";
|
|
|
|
print "actual score of hypothesis 1: $realScore1\n";
|
|
print "95% confidence interval for hypothesis 1 score: $scoreAvg1 +- $scoreVar1\n-----\n";
|
|
print "actual score of hypothesis 1: $realScore2\n";
|
|
print "95% confidence interval for hypothesis 2 score: $scoreAvg2 +- $scoreVar2\n-----\n";
|
|
print "Assuming that essentially the same system generated the two hypothesis translations (null-hypothesis),\n";
|
|
print "the probability of actually getting them (p-value) is: $scorePValue.\n";
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub bootstrap_pass {
|
|
my $scoreFunc = shift;
|
|
|
|
my @subSampleDiffArr;
|
|
my @subSample1Arr;
|
|
my @subSample2Arr;
|
|
|
|
#applying sampling
|
|
for (1..$TIMES_TO_REPEAT_SUBSAMPLING) {
|
|
my $subSampleIndices = drawWithReplacement($data->{size}, ($SUBSAMPLE_SIZE? $SUBSAMPLE_SIZE: $data->{size}));
|
|
|
|
my $score1 = &$scoreFunc($data->{refs}, $data->{hyp1}, $subSampleIndices);
|
|
my $score2 = &$scoreFunc($data->{refs}, $data->{hyp2}, $subSampleIndices);
|
|
|
|
push @subSampleDiffArr, abs($score2 - $score1);
|
|
push @subSample1Arr, $score1;
|
|
push @subSample2Arr, $score2;
|
|
}
|
|
|
|
return (\@subSampleDiffArr, \@subSample1Arr, \@subSample2Arr);
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub bootstrap_pvalue {
|
|
my $subSampleDiffArr = shift;
|
|
my $realScore1 = shift;
|
|
my $realScore2 = shift;
|
|
|
|
my $realDiff = abs($realScore2 - $realScore1);
|
|
|
|
#get subsample difference mean
|
|
my $averageSubSampleDiff = 0;
|
|
|
|
for my $subSampleDiff (@$subSampleDiffArr) {
|
|
$averageSubSampleDiff += $subSampleDiff;
|
|
}
|
|
|
|
$averageSubSampleDiff /= $TIMES_TO_REPEAT_SUBSAMPLING;
|
|
|
|
#calculating p-value
|
|
my $count = 0;
|
|
|
|
my $realScoreDiff = abs($realScore2 - $realScore1);
|
|
|
|
for my $subSampleDiff (@$subSampleDiffArr) {
|
|
if ($subSampleDiff - $averageSubSampleDiff >= $realDiff) {
|
|
$count++;
|
|
}
|
|
}
|
|
|
|
return $count / $TIMES_TO_REPEAT_SUBSAMPLING;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub bootstrap_interval {
|
|
my $subSampleArr = shift;
|
|
|
|
my @sorted = sort @$subSampleArr;
|
|
|
|
my $lowerIdx = int($TIMES_TO_REPEAT_SUBSAMPLING / 40);
|
|
my $higherIdx = $TIMES_TO_REPEAT_SUBSAMPLING - $lowerIdx - 1;
|
|
|
|
my $lower = $sorted[$lowerIdx];
|
|
my $higher = $sorted[$higherIdx];
|
|
my $diff = $higher - $lower;
|
|
|
|
return ($lower + 0.5 * $diff, 0.5 * $diff);
|
|
}
|
|
|
|
#####
|
|
# read 2 hyp and 1 to \infty ref data files
|
|
#####
|
|
sub readAllData {
|
|
my ($hypFile1, $hypFile2, @refFiles) = @_;
|
|
|
|
my %result;
|
|
|
|
#reading hypotheses and checking for matching sizes
|
|
$result{hyp1} = readData($hypFile1);
|
|
$result{size} = scalar @{$result{hyp1}};
|
|
|
|
$result{hyp2} = readData($hypFile2);
|
|
unless (scalar @{$result{hyp2}} == $result{size}) {
|
|
die ("ERROR: sizes of hypothesis sets 1 and 2 don't match");
|
|
}
|
|
|
|
#reading reference(s) and checking for matching sizes
|
|
$result{refs} = [];
|
|
$result{ngramCounts} = { };
|
|
my $i = 0;
|
|
|
|
for my $refFile (@refFiles) {
|
|
$i++;
|
|
my $refDataX = readData($refFile);
|
|
|
|
unless (scalar @$refDataX == $result{size}) {
|
|
die ("ERROR: ref set $i size doesn't match the size of hyp sets");
|
|
}
|
|
|
|
updateCounts($result{ngramCounts}, $refDataX);
|
|
|
|
push @{$result{refs}}, $refDataX;
|
|
}
|
|
|
|
return \%result;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub updateCounts {
|
|
my ($countHash, $refData) = @_;
|
|
|
|
for my $snt(@$refData) {
|
|
my $size = scalar @{$snt->{words}};
|
|
$countHash->{""} += $size;
|
|
|
|
for my $order(1..$MAX_NGRAMS) {
|
|
my $ngram;
|
|
|
|
for my $i (0..($size-$order)) {
|
|
$ngram = join(" ", @{$snt->{words}}[$i..($i + $order - 1)]);
|
|
|
|
$countHash->{$ngram}++;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub ngramInfo {
|
|
my ($data, $ngram) = @_;
|
|
|
|
my @nwords = split(/ /, $ngram);
|
|
pop @nwords;
|
|
my $smallGram = join(" ", @nwords);
|
|
|
|
return log($data->{ngramCounts}->{$smallGram} / $data->{ngramCounts}->{$ngram}) / log(2.0);
|
|
}
|
|
|
|
#####
|
|
# read sentences from file
|
|
#####
|
|
sub readData {
|
|
my $file = shift;
|
|
my @result;
|
|
|
|
open (FILE, $file) or die ("Failed to open `$file' for reading");
|
|
|
|
while (<FILE>) {
|
|
push @result, { words => [split(/\s+/, $_)] };
|
|
}
|
|
|
|
close (FILE);
|
|
|
|
return \@result;
|
|
}
|
|
|
|
#####
|
|
# calculate each sentence's contribution to the ngram precision and brevity penalty
|
|
#####
|
|
sub preEvalHypo {
|
|
my $data = shift;
|
|
my $hypId = shift;
|
|
|
|
for my $lineIdx (0..($data->{size} - 1)) {
|
|
preEvalHypoSnt($data, $hypId, $lineIdx);
|
|
}
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub preEvalHypoSnt {
|
|
my ($data, $hypId, $lineIdx) = @_;
|
|
|
|
my ($correctNgramCounts, $totalNgramCounts);
|
|
my ($refNgramCounts, $hypNgramCounts);
|
|
my ($coocNgramInfoSum, $totalNgramAmt);
|
|
|
|
my $hypSnt = $data->{$hypId}->[$lineIdx];
|
|
|
|
#update total hyp len
|
|
$hypSnt->{hyplen} = scalar @{$hypSnt->{words}};
|
|
|
|
#update total ref len with closest current ref len
|
|
$hypSnt->{reflen} = getClosestLength($data->{refs}, $lineIdx, $hypSnt->{hyplen});
|
|
$hypSnt->{avgreflen} = getAvgLength($data->{refs}, $lineIdx);
|
|
|
|
$hypSnt->{correctNgrams} = [];
|
|
$hypSnt->{totalNgrams} = [];
|
|
|
|
#update ngram precision for each n-gram order
|
|
for my $order (1..$MAX_NGRAMS) {
|
|
#hyp ngrams
|
|
$hypNgramCounts = groupNgrams($hypSnt, $order);
|
|
|
|
#ref ngrams
|
|
$refNgramCounts = groupNgramsMultiSrc($data->{refs}, $lineIdx, $order);
|
|
|
|
$correctNgramCounts = 0;
|
|
$totalNgramCounts = 0;
|
|
$coocNgramInfoSum = 0;
|
|
$totalNgramAmt = 0;
|
|
my $coocUpd;
|
|
|
|
#correct, total
|
|
for my $ngram (keys %$hypNgramCounts) {
|
|
$coocUpd = min($hypNgramCounts->{$ngram}, $refNgramCounts->{$ngram});
|
|
$correctNgramCounts += $coocUpd;
|
|
$totalNgramCounts += $hypNgramCounts->{$ngram};
|
|
|
|
if ($coocUpd > 0) {
|
|
$coocNgramInfoSum += ngramInfo($data, $ngram);
|
|
}
|
|
|
|
$totalNgramAmt++;
|
|
}
|
|
|
|
$hypSnt->{correctNgrams}->[$order] = $correctNgramCounts;
|
|
$hypSnt->{totalNgrams}->[$order] = $totalNgramCounts;
|
|
$hypSnt->{ngramNistInfoSum}->[$order] = $coocNgramInfoSum;
|
|
$hypSnt->{ngramNistCount}->[$order] = $totalNgramAmt;
|
|
}
|
|
}
|
|
|
|
#####
|
|
# draw a subsample of size $subSize from set (0..$setSize) with replacement
|
|
#####
|
|
sub drawWithReplacement {
|
|
my ($setSize, $subSize) = @_;
|
|
|
|
my @result;
|
|
|
|
for (1..$subSize) {
|
|
push @result, int(rand($setSize));
|
|
}
|
|
|
|
return \@result;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub getNist {
|
|
my ($refs, $hyp, $idxs) = @_;
|
|
|
|
#default value for $idxs
|
|
unless (defined($idxs)) {
|
|
$idxs = [0..((scalar @$hyp) - 1)];
|
|
}
|
|
|
|
#vars
|
|
my ($hypothesisLength, $referenceLength) = (0, 0);
|
|
my (@infosum, @totalamt);
|
|
|
|
#gather info from each line
|
|
for my $lineIdx (@$idxs) {
|
|
|
|
my $hypSnt = $hyp->[$lineIdx];
|
|
|
|
#update total hyp len
|
|
$hypothesisLength += $hypSnt->{hyplen};
|
|
|
|
#update total ref len with closest current ref len
|
|
$referenceLength += $hypSnt->{avgreflen};
|
|
|
|
#update ngram precision for each n-gram order
|
|
for my $order (1..$MAX_NGRAMS) {
|
|
$infosum[$order] += $hypSnt->{ngramNistInfoSum}->[$order];
|
|
$totalamt[$order] += $hypSnt->{ngramNistCount}->[$order];
|
|
}
|
|
}
|
|
|
|
my $toplog = log($hypothesisLength / $referenceLength);
|
|
my $btmlog = log(2.0/3.0);
|
|
|
|
#compose nist score
|
|
my $brevityPenalty = ($hypothesisLength > $referenceLength)? 1.0: exp(log(0.5) * $toplog * $toplog / ($btmlog * $btmlog));
|
|
|
|
my $sum = 0;
|
|
|
|
for my $order (1..$MAX_NGRAMS) {
|
|
$sum += $infosum[$order]/$totalamt[$order];
|
|
}
|
|
|
|
my $result = $sum * $brevityPenalty;
|
|
|
|
return $result;
|
|
}
|
|
|
|
#####
|
|
# refs: arrayref of different references, reference = array of lines, line = array of words, word = string
|
|
# hyp: arrayref of lines of hypothesis translation, line = array of words, word = string
|
|
# idxs: indices of lines to include; default value - full set (0..size_of_hyp-1)
|
|
#####
|
|
sub getBleu {
|
|
my ($refs, $hyp, $idxs) = @_;
|
|
|
|
#default value for $idxs
|
|
unless (defined($idxs)) {
|
|
$idxs = [0..((scalar @$hyp) - 1)];
|
|
}
|
|
|
|
#vars
|
|
my ($hypothesisLength, $referenceLength) = (0, 0);
|
|
my (@correctNgramCounts, @totalNgramCounts);
|
|
my ($refNgramCounts, $hypNgramCounts);
|
|
|
|
#gather info from each line
|
|
for my $lineIdx (@$idxs) {
|
|
my $hypSnt = $hyp->[$lineIdx];
|
|
|
|
#update total hyp len
|
|
$hypothesisLength += $hypSnt->{hyplen};
|
|
|
|
#update total ref len with closest current ref len
|
|
$referenceLength += $hypSnt->{reflen};
|
|
|
|
#update ngram precision for each n-gram order
|
|
for my $order (1..$MAX_NGRAMS) {
|
|
$correctNgramCounts[$order] += $hypSnt->{correctNgrams}->[$order];
|
|
$totalNgramCounts[$order] += $hypSnt->{totalNgrams}->[$order];
|
|
}
|
|
}
|
|
|
|
#compose bleu score
|
|
my $brevityPenalty = ($hypothesisLength < $referenceLength)? exp(1 - $referenceLength/$hypothesisLength): 1;
|
|
|
|
my $logsum = 0;
|
|
|
|
for my $order (1..$MAX_NGRAMS) {
|
|
$logsum += safeLog($correctNgramCounts[$order] / $totalNgramCounts[$order]);
|
|
}
|
|
|
|
return $brevityPenalty * exp($logsum / $MAX_NGRAMS);
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub getAvgLength {
|
|
my ($refs, $lineIdx) = @_;
|
|
|
|
my $result = 0;
|
|
my $count = 0;
|
|
|
|
for my $ref (@$refs) {
|
|
$result += scalar @{$ref->[$lineIdx]->{words}};
|
|
$count++;
|
|
}
|
|
|
|
return $result / $count;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub getClosestLength {
|
|
my ($refs, $lineIdx, $hypothesisLength) = @_;
|
|
|
|
my $bestDiff = infty();
|
|
my $bestLen = infty();
|
|
|
|
my ($currLen, $currDiff);
|
|
|
|
for my $ref (@$refs) {
|
|
$currLen = scalar @{$ref->[$lineIdx]->{words}};
|
|
$currDiff = abs($currLen - $hypothesisLength);
|
|
|
|
if ($currDiff < $bestDiff or ($currDiff == $bestDiff and $currLen < $bestLen)) {
|
|
$bestDiff = $currDiff;
|
|
$bestLen = $currLen;
|
|
}
|
|
}
|
|
|
|
return $bestLen;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub groupNgrams {
|
|
my ($snt, $order) = @_;
|
|
my %result;
|
|
|
|
my $size = scalar @{$snt->{words}};
|
|
my $ngram;
|
|
|
|
for my $i (0..($size-$order)) {
|
|
$ngram = join(" ", @{$snt->{words}}[$i..($i + $order - 1)]);
|
|
|
|
$result{$ngram}++;
|
|
}
|
|
|
|
return \%result;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub groupNgramsMultiSrc {
|
|
my ($refs, $lineIdx, $order) = @_;
|
|
my %result;
|
|
|
|
for my $ref (@$refs) {
|
|
my $currNgramCounts = groupNgrams($ref->[$lineIdx], $order);
|
|
|
|
for my $currNgram (keys %$currNgramCounts) {
|
|
$result{$currNgram} = max($result{$currNgram}, $currNgramCounts->{$currNgram});
|
|
}
|
|
}
|
|
|
|
return \%result;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub safeLog {
|
|
my $x = shift;
|
|
|
|
return ($x > 0)? log($x): -infty();
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub infty {
|
|
return 1e6000;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub min {
|
|
my ($a, $b) = @_;
|
|
|
|
return ($a < $b)? $a: $b;
|
|
}
|
|
|
|
#####
|
|
#
|
|
#####
|
|
sub max {
|
|
my ($a, $b) = @_;
|
|
|
|
return ($a > $b)? $a: $b;
|
|
}
|
|
|
|
sub poww {
|
|
my ($a, $b) = @_;
|
|
|
|
return exp($b * log($a));
|
|
}
|