mirror of
https://github.com/moses-smt/mosesdecoder.git
synced 2025-01-02 17:09:36 +03:00
92 lines
5.0 KiB
Plaintext
92 lines
5.0 KiB
Plaintext
Implementation of the Relative Entropy-based Phrase table filtering algorithm by Wang Ling (Ling et al, 2012).
|
|
|
|
This implementation also calculates the significance scores for the phrase tables based on the Fisher's Test(Johnson et al, 2007). Uses a slightly modified version of the "sigtest-filter" by Chris Dyer.
|
|
|
|
-------BUILD INSTRUCTIONS-------
|
|
|
|
1 - Build the sigtest-filter binary
|
|
|
|
1.1 - Download and build SALM available at http://projectile.sv.cmu.edu/research/public/tools/salm/salm.htm
|
|
|
|
1.2 - Run "make SALMDIR=<path_to_salm>" in "<path_to_moses>/contrib/relent-filter/sigtest-filter" to create the executable filter-pt
|
|
|
|
2 - Build moses project by running "./bjam <options>", this will create the executables for relent filtering
|
|
|
|
-------USAGE INSTRUCTIONS-------
|
|
|
|
Required files:
|
|
s_train - source training file
|
|
t_train - target training file
|
|
moses_ini - path to the moses configuration file ( after tuning )
|
|
pruning_binaries - path to the relent pruning binaries ( should be "<path_to_moses>/bin" )
|
|
pruning_scripts - path to the relent pruning scripts ( should be "<path_to_moses>/contrib/relent-filter/scripts" )
|
|
sigbin - path to the sigtest filter binaries ( should be "<path_to_moses>/contrib/relent-filter/sigtest-filter" )
|
|
output_dir - path to write the output
|
|
|
|
1 - build suffix arrays for the source and target parallel training data
|
|
|
|
1.1 - run "<path to salm>/Bin/Linux/Index/IndexSA.O32 <s_train>" (or IndexSA.O64)
|
|
|
|
1.2 - run "<path to salm>/Bin/Linux/Index/IndexSA.O32 <t_train>" (or IndexSA.O64)
|
|
|
|
2 - calculate phrase pair scores by running:
|
|
|
|
perl <pruning_scripts>/calcPruningScores.pl -moses_ini <moses_ini> -training_s <s_train> -training_t <t_train> -prune_bin <pruning_binaries> -prune_scripts <pruning_scripts> -moses_scripts <path_to_moses>/scripts/training/ -workdir <output_dir> -dec_size 10000
|
|
|
|
this will create the following files in the <output_dir/scores/> dir:
|
|
|
|
count.txt - counts of the phrase pairs for N(s,t) N(s,*) and N(*,t)
|
|
divergence.txt - negative log of the divergence of the phrase pair
|
|
empirical.txt - empirical distribution of the phrase pairs N(s,t)/N(*,*)
|
|
rel_ent.txt - relative entropy of the phrase pairs
|
|
significance.txt - significance of the phrase pairs
|
|
|
|
You can use any one of these files for pruning and also combine these scores using <pruning_scripts>/interpolateScores.pl
|
|
|
|
3 - To actually prune a phrase table you should run <pruning_scripts>/prunePT.pl
|
|
|
|
For instance, to prune 30% of the phrase table using rel_ent run:
|
|
perl <pruning_scripts>/prunePT.pl -table <phrase_table_file> -scores <output_dir>/scores/rel_ent.txt -percentage 70 > <pruned_phrase_table_file>
|
|
|
|
You can also prune by threshold
|
|
perl <pruning_scripts>/prunePT.pl -table <phrase_table_file> -scores <output_dir>/scores/rel_ent.txt -threshold 0.1 > <pruned_phrase_table_file>
|
|
|
|
The same must be done for the reordering table by replacing <phrase_table_file> with the <reord_table_file>
|
|
|
|
perl <pruning_scripts>/prunePT.pl -table <reord_table_file> -scores <output_dir>/scores/rel_ent.txt -percentage 70 > <pruned_reord_table_file>
|
|
|
|
-------RUNNING STEP 2 IN PARALLEL-------
|
|
|
|
Step 2 requires the forced decoding of the whole set of phrase pairs in the table, so unless you test it on a small corpora, it usually requires large amounts of time to process.
|
|
Thus, we recommend users to run multiple instances of "<pruning_scripts>/calcPruningScores.pl" in parallel to process different parts of the phrase table.
|
|
|
|
To do this, run:
|
|
|
|
perl <pruning_scripts>/calcPruningScores.pl -moses_ini <moses_ini> -training_s <s_train> -training_t <t_train> -prune_bin <pruning_binaries> -prune_scripts <pruning_scripts> -moses_scripts <path_to_moses>/scripts/training/ -workdir <output_dir> -dec_size 10000 -start 0 -end 100000
|
|
|
|
The -start and -end tags tell the script to only calculate the results for phrase pairs between 0 and 99999.
|
|
|
|
Thus, an example of a shell script to run for the whole phrase table would be:
|
|
|
|
size=`wc <phrase_table_file> | gawk '{print $1}'`
|
|
phrases_per_process=100000
|
|
|
|
for i in $(seq 0 $phrases_per_process $size)
|
|
do
|
|
end=`expr $i + $phrases_per_process`
|
|
perl <pruning_scripts>/calcPruningScores.pl -moses_ini <moses_ini> -training_s <s_train> -training_t <t_train> -prune_bin <pruning_binaries> -prune_scripts <pruning_scripts> -moses_scripts <path_to_moses>/scripts/training/ -workdir <output_dir>.$i-$end -dec_size 10000 -start $i -end $end
|
|
done
|
|
|
|
After all processes finish, simply join the partial score files together in the same order.
|
|
|
|
-------REFERENCES-------
|
|
Ling, W., Graça, J., Trancoso, I., and Black, A. (2012). Entropy-based pruning for phrase-based
|
|
machine translation. In Proceedings of the 2012
|
|
Joint Conference on Empirical Methods in Natural Language Processing and
|
|
Computational Natural Language Learning (EMNLP-CoNLL), pp. 962-971.
|
|
|
|
H. Johnson, J. Martin, G. Foster and R. Kuhn. (2007) Improving Translation
|
|
Quality by Discarding Most of the Phrasetable. In Proceedings of the 2007
|
|
Joint Conference on Empirical Methods in Natural Language Processing and
|
|
Computational Natural Language Learning (EMNLP-CoNLL), pp. 967-975.
|