Trying to use a proc macro from a 2018 edition crate in a 2018 edition crate that reexports wasm bindgen's output failed before this commit with "could not find `wasm_bindgen` in `{{root}}`".
This commit was made with
rg " ::wasm_bindgen::" --files-with-matches | xargs sed -i 's/::wasm_bindgen::/wasm_bindgen::/g'
This allows subverting the checks and resolution performed by the
`module` attribute added as part of [RFC 6] and has been discussed in #1343.
Closes#1343
[RFC 6]: https://github.com/rustwasm/rfcs/pull/6
Using `unsafe` was just a little too eager there so let's use an
off-the-shelf solution for solving the actual problem we have, which is
to allocate strings with a lifetime of `Interner` rather than
deduplicating strings.
This commit is an implementation of [RFC 6] which enables crates to
inline local JS snippets into the final output artifact of
`wasm-bindgen`. This is accompanied with a few minor breaking changes
which are intended to be relatively minor in practice:
* The `module` attribute disallows paths starting with `./` and `../`.
It requires paths starting with `/` to actually exist on the filesystem.
* The `--browser` flag no longer emits bundler-compatible code, but
rather emits an ES module that can be natively loaded into a browser.
Otherwise be sure to check out [the RFC][RFC 6] for more details, and
otherwise this should implement at least the MVP version of the RFC!
Notably at this time JS snippets with `--nodejs` or `--no-modules` are
not supported and will unconditionally generate an error.
[RFC 6]: https://github.com/rustwasm/rfcs/pull/6Closes#1311
This commit adds experimental support to `wasm-bindgen` to emit and
leverage the `anyref` native wasm type. This native type is still in a
proposal status (the reference-types proposal). The intention of
`anyref` is to be able to directly hold JS values in wasm and pass the
to imported functions, namely to empower eventual host bindings (now
renamed WebIDL bindings) integration where we can skip JS shims
altogether for many imports.
This commit doesn't actually affect wasm-bindgen's behavior at all
as-is, but rather this support requires an opt-in env var to be
configured. Once the support is stable in browsers it's intended that
this will add a CLI switch for turning on this support, eventually
defaulting it to `true` in the far future.
The basic strategy here is to take the `stack` and `slab` globals in the
generated JS glue and move them into wasm using a table. This new table
in wasm is managed at the fringes via injected shims. At
`wasm-bindgen`-time the CLI will rewrite exports and imports with shims
that actually use `anyref` if needed, performing loads/stores inside the
wasm module instead of externally in the wasm module.
This should provide a boost over what we have today, but it's not a
fantastic strategy long term. We have a more grand vision for `anyref`
being a first-class type in the language, but that's on a much longer
horizon and this is currently thought to be the best we can do in terms
of integration in the near future.
The stack/heap JS tables are combined into one wasm table. The stack
starts at the end of the table and grows down with a stack pointer (also
injected). The heap starts at the end and grows up (state managed in
linear memory). The anyref transformation here will hook up various
intrinsics in wasm-bindgen to the runtime functionality if the anyref
supoprt is enabled.
The main tricky treatment here was applied to closures, where we need JS
to use a different function pointer than the one Rust gives it to use a
JS function pointer empowered with anyref. This works by switching up a
bit how descriptors work, embedding the shims to call inside descriptors
rather than communicated at runtime. This means that we're accessing
constant values in the generated JS and we can just update the constant
value accessed.
Currently closure shims are communicated to JS at runtime, although at
runtime the same constant value is always passed to JS! More pressing,
however, work in #1002 requires knowledge of closure descriptor indices
at `wasm-bindgen` time which is not currently known.
Since the closure descriptor shims and such are already constant values,
this commit moves the descriptor function indices into the *descriptor*
for a closure/function pointer. This way we can learn about these values
at `wasm-bindgen` time instead of only knowing them at runtime.
This should have no semantic change on users of `wasm-bindgen`, although
some closure invocations may be slightly speedier because there's less
arguments being transferred over the boundary. Overall though this will
help #1002 as the closure shims that the Rust compiler generates may not
be the exact ones we hand out to JS, but rather wrappers around them
which do `anyref` business things.
This commit adds a new attribute to `#[wasm_bindgen]`: `start`. The
`start` attribute can be used to indicate that a function should be
executed when the module is loaded, configuring the `start` function of
the wasm executable. While this doesn't necessarily literally configure
the `start` section, it does its best!
Only one crate in a crate graph may indicate `#[wasm_bindgen(start)]`,
so it's not recommended to be used in libraries but only end-user
applications. Currently this still must be used with the `crate-type =
["cdylib"]` annotation in `Cargo.toml`.
The implementation here is somewhat tricky because of the circular
dependency between our generated JS and the wasm file that we emit. This
circular dependency makes running initialization routines (like the
`start` shim) particularly fraught with complications because one may
need to run before the other but bundlers may not necessarily respect
it. Workarounds have been implemented for various emission strategies,
for example calling the start function directly after exports are wired
up with `--no-modules` and otherwise working around what appears to be
a Webpack bug with initializers running in a different order than we'd
like. In any case, this in theory doesn't show up to the end user!
Closes#74
This commit implements a system that will assert that all
`#[wasm_bindgen]` attributes are actually used during compilation. This
should help ensure that we don't sneak in stray attributes that don't
actually end up having any meaning, and hopefully make it a bit easier
to learn `#[wasm_bindgen]`!
This commit implements the first half of [RFC #5] where the `Deref`
trait is implemented for all imported types. The target of `Deref` is
either the first entry of the list of `extends` attribute or `JsValue`.
All examples using `.as_ref()` with various `web-sys` types have been
updated to the more ergonomic deref casts now. Additionally the
`web-sys` generation of the `extends` array has been fixed slightly to
explicitly list implementatoins in the hierarchy order to ensure the
correct target for `Deref` is chosen.
[RFC #5]: https://github.com/rustwasm/rfcs/blob/master/text/005-structural-and-deref.md
This commit migrates away from using Serde for the custom section in
wasm executables. This is a refactoring of a purely-internal data
structure to `wasm-bindgen` and should have no visible functional change
on users.
The motivation for this commit is two fold:
* First, the compile times using `serde_json` and `serde_derive` for the
syntax extension isn't the most fun.
* Second, eventually we're going to want to stablize the layout of the
custom section, and it's highly unlikely to be json!
Primarily, though, the intention of this commit is to improve the
cold-cache compile time of `wasm-bindgen` by ensuring that for new users
this project builds as quickly as possible. By removing some heavyweight
dependencies from the procedural macro, `serde`, `serde_derive`, and
`serde_json`, we're able to get a pretty nice build time improvement for
the `wasm-bindgen` crate itself:
| | single-core build | parallel build |
|-------------|-------------------|----------------|
| master | 36.5s | 17.3s |
| this commit | 20.5s | 11.8s |
These are't really end-all-be-all wins but they're much better
especially on the spectrum of weaker CPUs (in theory modeled by the
single-core case showing we have 42% less CPU work in theory).