* Create a new `web-sys` crate
This will eventually contain all the WebIDL-generated bindings to Web APIs.
* ci: Test the new `web-sys` crate in CI
* web-sys: Add a small README
* web-sys: Vendor all the WebIDL files from mozilla-central
* backend: Add a pass to remove AST items that use undefined imports
This is necessary for the WebIDL frontend, which can't translate many WebIDL
constructs into equivalent wasm-bindgen AST things yet. It lets us make
incremental progress: we can generate bindings to methods we can support right
now even though there might be methods on the same interface that we can't
support yet.
* webidl: Add a bunch of missing semicolons
* webidl: Make parsing private
It was only `pub` so that we could test it, but we ended up moving towards
integration tests rather than unit tests that assert particular ASTs are parsed
from WebIDL files.
* webidl: Remove uses of undefined import types
* test-project-builder: Build projects in "very verbose" mode
This helps for debugging failing WebIDL-related tests.
* test-project-builder: Add more profiling timers
* test-project-builder: Detect when webpack-dev-server fails
Instead of going into an infinite loop, detect when webpack-dev-server fails to
start up and early exit the test.
* webidl: Specify version for dev-dependency on wasm-bindgen-backend
Instead of only a relative path.
* guide: Add section about contributing to `web-sys`
* WIP enable Event.webidl
Still need to fix and finish the test.
* Update expected webidl output
* Start out a test's status as incomplete
That way if we don't fill it in the error message doesn't look quite so bizarre
* Fix onerror function in headless mode
Otherwise we don't see any output!
* Fix package.json/node_modules handling in project generation
Make sure these are looked up in the git project root rather than the crate root
* Avoid logging body text
This was meant for debugging and is otherwise pretty noisy
* Fix a relative path
* More expected test fixes
* Fix a typo
* test-project-builder: Allow asynchronous tests
* webidl: Convert [Unforgeable] attributes into `#[wasm_bindgen(structural)]`
Fixes#432
* test-project-builder: Print generated WebIDL bindings for debugging purposes
Helps debug bad WebIDL bindings generation inside tests.
* When we can't find a descriptor, say which one can't be found
This helps when debugging things that need to become structural.
* web-sys: Test bindings for Event
* ci: Use `--manifest-path dir` instead of `cd dir && ...`
* web-sys: Just move .webidl files isntead of symlinking to enable them
* tests: Polyfill Array.prototype.values for older browsers in CI
* test-project-builder: Don't panic on poisoned headless test mutex
We only use it to serialize headless tests so that we don't try to bind the port
concurrently. Its OK to run another headless test if an earlier one panicked.
* JsValue: Add {is,as}_{object,function} methods
Allows dynamically casting values to `js::Object` and `js::Function`.
* tidy: Fix whitespace and missing semicolons
* Allow for dynamic feature detection of methods
If we create bindings to a method that doesn't exist in this implementation,
then it shouldn't fail until if/when we actually try and invoke that missing
method.
* tests: Do feature detection in Array.prototype.values test
* Add JsValue::{is_string, as_js_string} methods
And document all the cast/convert/check methods for js value.
* eslint: allow backtick string literals
* Only generate a fallback import function for non-structural imports
* remove BindgenAttrs from other backend::ast structs
This is primarily a tool for use with the macro crate. Most of
these attributes were ignored in the actual codegen, but a few
were still being used. This is confusing when trying to add
other sources for codegen (such as webidl and typescript).
* move parsing logic to macro crate
This makes the backend crate solely concerned with having an ast
for which we can generate code.
* Reorganize Travis configuration
* Add a `JOB` env var descriptor to all matrix entries. Not used anywhere but is
useful when viewing the whole build on Travis's web interface.
* Reorganize where builds are located, moving slow builds first and fast ones
last.
* Change checking the CLI builds from `cargo build` to `cargo check`
* Use YAML references to reduce some duplication
* Print some more timing statistics for each test
* Extract `Project` helper in tests to a module
This'll help make it a bit more extensible over time. At the same time the
methods are also slightly reorganized to read more clearly from top to bottom.
* Migrate all tests away from Webpack
Wepback can take a significant amount of time to execute and when it's
multiplied by hundreds of tests that adds up really quickly! After investigating
Node's `--experimental-modules` option it looks like it's suitable for our use
so this switches all tests to using JS files (moving away from TypeScript as
well) with `--experimental-modules` with Node.
Tests will be selectively re-enabled with webpack and node.js specific output
(that doesn't require `--experimental-modules`), coming in later commits.
* Restore the node test for node.js output
Ensures it's workable as-is
* Only generate typescript with webpack
* Only read wasm files for webpack
* Skip package.json/node_modules for now
* Only generate webpack config if needed
* Start a dedicated test module for typescript
Will hopefully verify the generated Typescript compiles OK.
* Remove unneeded `node` method
* Fixup some rebase conflicts
* Don't run asmjs example on travis
* Fixup generator tests
* Attempt to fix windows
* Comment windows fix
* More test fixes
* More exclusions
* More test fixes
* Relax eslint regex
Catch mjs modules as well
* Fix eslint
* Speed up travis on examples slightly
Travis tests show hundreds of warning for `'y' is defined but never used` and
when investigating it looks like a mistake was introduced in 0938858aa
during #272, so hopefully this'll be an easy fix!
If a JS import's shim isn't actually imported that means that somewhere along
the way it was optimized out or it was never used in the first place! In that
case we can skip generation of the JS bindings for it as it's not needed.
This can happen when a nested dependency crate exports things but the root crate
doesn't use them. In these cases, it is fine to ignore the missing descriptor,
because the thing it describes was removed as dead code.
* backend comments complete
* better matching
* gen comments
* Add example
* Move test bindings gen to own fn
* move build step into build fn
* add fn to read js, refactor gen_bindings/test to allow for this
* Add comments test
* Update readmes
* add comments to travis
* fix broken tests
* +x on build.sh
* fix wbg cmd in build.sh
* Address fitzgen's comments
This commit optimizes constructing an instance of `JsValue` which is one of
`null`, `undefined`, `true`, or `false`. These are commonly created on the Rust
side of things and since there's only a limited set of values we can easily
prepopulate the global slab with a few entries and use hardcoded indices to
refer to these constants. This should avoid the need to travel into JS to insert
a `null` or and `undefined` into the global slab.
Awhile back slices switched to being raw views into wasm memory, but this
doens't work if we free the underlying memory unconditionally! Moving around a
`Vec` is already moving a lot of data, so let's copy it onto the JS heap instead
of leaving it in the wasm heap.
This commit is an implementation of mapping u64/i64 to `BigInt` in JS through
the unstable BigInt APIs. The BigInt type will ship soon in Chrome and so this
commit builds out the necessary support for wasm-bindgen to use it!
When adding support for mutable slices I was under the impression that if the
wasm memory was reallocated while we were using it then we'd have to commit the
changes from the original buffer back to the new buffer. What I didn't know,
however, is that once the wasm memory is reallocated then all views into it are
supposed to be defunkt.
It looks like node 9 didn't have this implementation quite right and it appears
fixed in node 10, causing the deleted test here to fail. While this commit does
raise the question of whether this is the right approach to interact with slices
in JS I think the answer is still "yes". The user can always initiate the copy
if need be and that seems strictly better than copying 100% of the time.
This commit updates the `Abi` associated type for all slice types to a
`WasmSlice` type, an aggregate of two `u32` integers. This translates to an ABI
where when passed as a function argument it expands to two integer arguments,
and when passed as a return value it passes a return pointer as the first
argument to get filled in.
This is hopefully more forwards-compatible with the host bindings proposal which
uses this strategy for passing string arguments at least. It's a little sketchy
what we're doing as there's not really a stable ABI yet, but hopefully this'll
all be relatively stable for awhile!
This commit adds support for mutable slices to pass the boundary between JS and
Rust. While mutable slices cannot be used as return values they can be listed as
arguments to both exported functions as well as imported functions.
When passing a mutable slice into a Rust function (aka having it as an argument
to an exported Rust function) then like before with a normal slice it's copied
into the wasm memory. Afterwards, however, the updates in the wasm memory will
be reflected back into the original slice. This does require a lot of copying
and probably isn't the most efficient, but it should at least work for the time
being.
The real nifty part happens when Rust passes a mutable slice out to JS. When
doing this it's a very cheap operation that just gets a subarray of the main
wasm memory. Now the wasm memory's buffer can change over time which can produce
surprising results where memory is modified in JS but it may not be reflected
back into Rust. To accomodate this when a JS imported function returns any
updates to the buffer are copied back to Rust if Rust's memory buffer has
changed in the meantime.
Along the way this fixes usage of `slice` to instead use `subarray` as that's
what we really want, no copying. All methods have been updated to use `subarray`
accessors instead of `slice` or constructing new arrays.
Closes#53
This commit adds an example of executing the `wasm2asm` tool to generate asm.js
output instead of WebAssembly. This is often useful when supporting older
browsers, such as IE 11, that doesn't have native support for WebAssembly.
These functions are activated with the `serde-serialization` feature of the
`wasm-bindgen` crate. When activated they will allow passing any arbitrary value
into JS that implements the `Serialize` trait and receiving any value from JS
using the `Deserialize` trait. The interchange between JS and Rust is JSON.
Closes#96
This commit adds a `#[wasm_bindgen(version = "...")]` attribute support. This
information is eventually written into a `__wasm_pack_unstable` section.
Currently this is a strawman for the proposal in ashleygwilliams/wasm-pack#101
Turns out there was a bug when passing a vector of `JsValue` instances back to
JS all objects were leaked rather than correctly removed from the global slab.