mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-17 02:03:19 +03:00
78 lines
2.7 KiB
Python
78 lines
2.7 KiB
Python
|
import os
|
||
|
import json
|
||
|
import random
|
||
|
|
||
|
from torch.utils.data import Dataset
|
||
|
from torchvision.datasets.utils import download_url
|
||
|
|
||
|
from PIL import Image
|
||
|
|
||
|
from data.utils import pre_caption
|
||
|
|
||
|
class nlvr_dataset(Dataset):
|
||
|
def __init__(self, transform, image_root, ann_root, split):
|
||
|
'''
|
||
|
image_root (string): Root directory of images
|
||
|
ann_root (string): directory to store the annotation file
|
||
|
split (string): train, val or test
|
||
|
'''
|
||
|
urls = {'train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_train.json',
|
||
|
'val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_dev.json',
|
||
|
'test':'https://storage.googleapis.com/sfr-vision-language-research/datasets/nlvr_test.json'}
|
||
|
filenames = {'train':'nlvr_train.json','val':'nlvr_dev.json','test':'nlvr_test.json'}
|
||
|
|
||
|
download_url(urls[split],ann_root)
|
||
|
self.annotation = json.load(open(os.path.join(ann_root,filenames[split]),'r'))
|
||
|
|
||
|
self.transform = transform
|
||
|
self.image_root = image_root
|
||
|
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.annotation)
|
||
|
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
|
||
|
ann = self.annotation[index]
|
||
|
|
||
|
image0_path = os.path.join(self.image_root,ann['images'][0])
|
||
|
image0 = Image.open(image0_path).convert('RGB')
|
||
|
image0 = self.transform(image0)
|
||
|
|
||
|
image1_path = os.path.join(self.image_root,ann['images'][1])
|
||
|
image1 = Image.open(image1_path).convert('RGB')
|
||
|
image1 = self.transform(image1)
|
||
|
|
||
|
sentence = pre_caption(ann['sentence'], 40)
|
||
|
|
||
|
if ann['label']=='True':
|
||
|
label = 1
|
||
|
else:
|
||
|
label = 0
|
||
|
|
||
|
words = sentence.split(' ')
|
||
|
|
||
|
if 'left' not in words and 'right' not in words:
|
||
|
if random.random()<0.5:
|
||
|
return image0, image1, sentence, label
|
||
|
else:
|
||
|
return image1, image0, sentence, label
|
||
|
else:
|
||
|
if random.random()<0.5:
|
||
|
return image0, image1, sentence, label
|
||
|
else:
|
||
|
new_words = []
|
||
|
for word in words:
|
||
|
if word=='left':
|
||
|
new_words.append('right')
|
||
|
elif word=='right':
|
||
|
new_words.append('left')
|
||
|
else:
|
||
|
new_words.append(word)
|
||
|
|
||
|
sentence = ' '.join(new_words)
|
||
|
return image1, image0, sentence, label
|
||
|
|
||
|
|
||
|
|