mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-15 15:22:55 +03:00
88 lines
3.4 KiB
Python
88 lines
3.4 KiB
Python
|
import os
|
||
|
import json
|
||
|
import random
|
||
|
from PIL import Image
|
||
|
|
||
|
import torch
|
||
|
from torch.utils.data import Dataset
|
||
|
from data.utils import pre_question
|
||
|
|
||
|
from torchvision.datasets.utils import download_url
|
||
|
|
||
|
class vqa_dataset(Dataset):
|
||
|
def __init__(self, transform, ann_root, vqa_root, vg_root, train_files=[], split="train"):
|
||
|
self.split = split
|
||
|
|
||
|
self.transform = transform
|
||
|
self.vqa_root = vqa_root
|
||
|
self.vg_root = vg_root
|
||
|
|
||
|
if split=='train':
|
||
|
urls = {'vqa_train':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_train.json',
|
||
|
'vqa_val':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_val.json',
|
||
|
'vg_qa':'https://storage.googleapis.com/sfr-vision-language-research/datasets/vg_qa.json'}
|
||
|
|
||
|
self.annotation = []
|
||
|
for f in train_files:
|
||
|
download_url(urls[f],ann_root)
|
||
|
self.annotation += json.load(open(os.path.join(ann_root,'%s.json'%f),'r'))
|
||
|
else:
|
||
|
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/vqa_test.json',ann_root)
|
||
|
self.annotation = json.load(open(os.path.join(ann_root,'vqa_test.json'),'r'))
|
||
|
|
||
|
download_url('https://storage.googleapis.com/sfr-vision-language-research/datasets/answer_list.json',ann_root)
|
||
|
self.answer_list = json.load(open(os.path.join(ann_root,'answer_list.json'),'r'))
|
||
|
|
||
|
|
||
|
def __len__(self):
|
||
|
return len(self.annotation)
|
||
|
|
||
|
def __getitem__(self, index):
|
||
|
|
||
|
ann = self.annotation[index]
|
||
|
|
||
|
if ann['dataset']=='vqa':
|
||
|
image_path = os.path.join(self.vqa_root,ann['image'])
|
||
|
elif ann['dataset']=='vg':
|
||
|
image_path = os.path.join(self.vg_root,ann['image'])
|
||
|
|
||
|
image = Image.open(image_path).convert('RGB')
|
||
|
image = self.transform(image)
|
||
|
|
||
|
if self.split == 'test':
|
||
|
question = pre_question(ann['question'])
|
||
|
question_id = ann['question_id']
|
||
|
return image, question, question_id
|
||
|
|
||
|
|
||
|
elif self.split=='train':
|
||
|
|
||
|
question = pre_question(ann['question'])
|
||
|
|
||
|
if ann['dataset']=='vqa':
|
||
|
answer_weight = {}
|
||
|
for answer in ann['answer']:
|
||
|
if answer in answer_weight.keys():
|
||
|
answer_weight[answer] += 1/len(ann['answer'])
|
||
|
else:
|
||
|
answer_weight[answer] = 1/len(ann['answer'])
|
||
|
|
||
|
answers = list(answer_weight.keys())
|
||
|
weights = list(answer_weight.values())
|
||
|
|
||
|
elif ann['dataset']=='vg':
|
||
|
answers = [ann['answer']]
|
||
|
weights = [0.2]
|
||
|
|
||
|
return image, question, answers, weights
|
||
|
|
||
|
|
||
|
def vqa_collate_fn(batch):
|
||
|
image_list, question_list, answer_list, weight_list, n = [], [], [], [], []
|
||
|
for image, question, answer, weights in batch:
|
||
|
image_list.append(image)
|
||
|
question_list.append(question)
|
||
|
weight_list += weights
|
||
|
answer_list += answer
|
||
|
n.append(len(answer))
|
||
|
return torch.stack(image_list,dim=0), question_list, answer_list, torch.Tensor(weight_list), n
|