stable-diffusion-webui/ldm/data/coco_karpathy_dataset.py
2023-06-23 02:58:24 +00:00

129 lines
4.4 KiB
Python

import os
import json
from torch.utils.data import Dataset
from torchvision.datasets.utils import download_url
from PIL import Image
from data.utils import pre_caption
class coco_karpathy_train(Dataset):
def __init__(self, transform, image_root, ann_root, max_words=30, prompt=""):
"""
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
"""
url = "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_train.json"
filename = "coco_karpathy_train.json"
download_url(url, ann_root)
self.annotation = json.load(open(os.path.join(ann_root, filename), "r"))
self.transform = transform
self.image_root = image_root
self.max_words = max_words
self.prompt = prompt
self.img_ids = {}
n = 0
for ann in self.annotation:
img_id = ann["image_id"]
if img_id not in self.img_ids.keys():
self.img_ids[img_id] = n
n += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.transform(image)
caption = self.prompt + pre_caption(ann["caption"], self.max_words)
return image, caption, self.img_ids[ann["image_id"]]
class coco_karpathy_caption_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split):
"""
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
urls = {
"val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json",
"test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json",
}
filenames = {"val": "coco_karpathy_val.json", "test": "coco_karpathy_test.json"}
download_url(urls[split], ann_root)
self.annotation = json.load(open(os.path.join(ann_root, filenames[split]), "r"))
self.transform = transform
self.image_root = image_root
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
ann = self.annotation[index]
image_path = os.path.join(self.image_root, ann["image"])
image = Image.open(image_path).convert("RGB")
image = self.transform(image)
img_id = ann["image"].split("/")[-1].strip(".jpg").split("_")[-1]
return image, int(img_id)
class coco_karpathy_retrieval_eval(Dataset):
def __init__(self, transform, image_root, ann_root, split, max_words=30):
"""
image_root (string): Root directory of images (e.g. coco/images/)
ann_root (string): directory to store the annotation file
split (string): val or test
"""
urls = {
"val": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_val.json",
"test": "https://storage.googleapis.com/sfr-vision-language-research/datasets/coco_karpathy_test.json",
}
filenames = {"val": "coco_karpathy_val.json", "test": "coco_karpathy_test.json"}
download_url(urls[split], ann_root)
self.annotation = json.load(open(os.path.join(ann_root, filenames[split]), "r"))
self.transform = transform
self.image_root = image_root
self.text = []
self.image = []
self.txt2img = {}
self.img2txt = {}
txt_id = 0
for img_id, ann in enumerate(self.annotation):
self.image.append(ann["image"])
self.img2txt[img_id] = []
for i, caption in enumerate(ann["caption"]):
self.text.append(pre_caption(caption, max_words))
self.img2txt[img_id].append(txt_id)
self.txt2img[txt_id] = img_id
txt_id += 1
def __len__(self):
return len(self.annotation)
def __getitem__(self, index):
image_path = os.path.join(self.image_root, self.annotation[index]["image"])
image = Image.open(image_path).convert("RGB")
image = self.transform(image)
return image, index