mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-14 23:02:00 +03:00
a9bc7eae19
for more information, see https://pre-commit.ci
1392 lines
49 KiB
Python
1392 lines
49 KiB
Python
"""
|
|
wild mixture of
|
|
https://github.com/lucidrains/denoising-diffusion-pytorch/blob/7706bdfc6f527f58d33f84b7b522e61e6e3164b3/denoising_diffusion_pytorch/denoising_diffusion_pytorch.py
|
|
https://github.com/openai/improved-diffusion/blob/e94489283bb876ac1477d5dd7709bbbd2d9902ce/improved_diffusion/gaussian_diffusion.py
|
|
https://github.com/CompVis/taming-transformers
|
|
-- merci
|
|
"""
|
|
|
|
from tqdm.auto import trange, tqdm
|
|
import torch
|
|
from einops import rearrange
|
|
from tqdm import tqdm
|
|
from ldm.modules.distributions.distributions import DiagonalGaussianDistribution
|
|
from ldm.models.autoencoder import VQModelInterface
|
|
import numpy as np
|
|
import pytorch_lightning as pl
|
|
from functools import partial
|
|
from pytorch_lightning.utilities.distributed import rank_zero_only
|
|
from ldm.util import exists, default, instantiate_from_config
|
|
from ldm.modules.diffusionmodules.util import make_beta_schedule
|
|
from ldm.modules.diffusionmodules.util import (
|
|
make_ddim_sampling_parameters,
|
|
make_ddim_timesteps,
|
|
noise_like,
|
|
)
|
|
from ldm.modules.diffusionmodules.util import (
|
|
make_beta_schedule,
|
|
extract_into_tensor,
|
|
noise_like,
|
|
)
|
|
from .samplers import (
|
|
CompVisDenoiser,
|
|
get_ancestral_step,
|
|
to_d,
|
|
append_dims,
|
|
linear_multistep_coeff,
|
|
)
|
|
|
|
|
|
def disabled_train(self):
|
|
"""Overwrite model.train with this function to make sure train/eval mode
|
|
does not change anymore."""
|
|
return self
|
|
|
|
|
|
class DDPM(pl.LightningModule):
|
|
# classic DDPM with Gaussian diffusion, in image space
|
|
def __init__(
|
|
self,
|
|
timesteps=1000,
|
|
beta_schedule="linear",
|
|
ckpt_path=None,
|
|
ignore_keys=[],
|
|
load_only_unet=False,
|
|
monitor="val/loss",
|
|
use_ema=True,
|
|
first_stage_key="image",
|
|
image_size=256,
|
|
channels=3,
|
|
log_every_t=100,
|
|
clip_denoised=True,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
given_betas=None,
|
|
original_elbo_weight=0.0,
|
|
v_posterior=0.0, # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta
|
|
l_simple_weight=1.0,
|
|
conditioning_key=None,
|
|
parameterization="eps", # all assuming fixed variance schedules
|
|
scheduler_config=None,
|
|
use_positional_encodings=False,
|
|
):
|
|
super().__init__()
|
|
assert parameterization in [
|
|
"eps",
|
|
"x0",
|
|
], 'currently only supporting "eps" and "x0"'
|
|
self.parameterization = parameterization
|
|
print(
|
|
f"{self.__class__.__name__}: Running in {self.parameterization}-prediction mode"
|
|
)
|
|
self.cond_stage_model = None
|
|
self.clip_denoised = clip_denoised
|
|
self.log_every_t = log_every_t
|
|
self.first_stage_key = first_stage_key
|
|
self.image_size = image_size # try conv?
|
|
self.channels = channels
|
|
self.use_positional_encodings = use_positional_encodings
|
|
self.use_scheduler = scheduler_config is not None
|
|
if self.use_scheduler:
|
|
self.scheduler_config = scheduler_config
|
|
|
|
self.v_posterior = v_posterior
|
|
self.original_elbo_weight = original_elbo_weight
|
|
self.l_simple_weight = l_simple_weight
|
|
|
|
if monitor is not None:
|
|
self.monitor = monitor
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(
|
|
ckpt_path, ignore_keys=ignore_keys, only_model=load_only_unet
|
|
)
|
|
self.register_schedule(
|
|
given_betas=given_betas,
|
|
beta_schedule=beta_schedule,
|
|
timesteps=timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
|
|
def register_schedule(
|
|
self,
|
|
given_betas=None,
|
|
beta_schedule="linear",
|
|
timesteps=1000,
|
|
linear_start=1e-4,
|
|
linear_end=2e-2,
|
|
cosine_s=8e-3,
|
|
):
|
|
if exists(given_betas):
|
|
betas = given_betas
|
|
else:
|
|
betas = make_beta_schedule(
|
|
beta_schedule,
|
|
timesteps,
|
|
linear_start=linear_start,
|
|
linear_end=linear_end,
|
|
cosine_s=cosine_s,
|
|
)
|
|
alphas = 1.0 - betas
|
|
alphas_cumprod = np.cumprod(alphas, axis=0)
|
|
|
|
(timesteps,) = betas.shape
|
|
self.num_timesteps = int(timesteps)
|
|
self.linear_start = linear_start
|
|
self.linear_end = linear_end
|
|
assert (
|
|
alphas_cumprod.shape[0] == self.num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
to_torch = partial(torch.tensor, dtype=torch.float32)
|
|
|
|
self.register_buffer("betas", to_torch(betas))
|
|
self.register_buffer("alphas_cumprod", to_torch(alphas_cumprod))
|
|
|
|
|
|
class FirstStage(DDPM):
|
|
"""main class"""
|
|
|
|
def __init__(
|
|
self,
|
|
first_stage_config,
|
|
num_timesteps_cond=None,
|
|
cond_stage_key="image",
|
|
cond_stage_trainable=False,
|
|
concat_mode=True,
|
|
cond_stage_forward=None,
|
|
conditioning_key=None,
|
|
scale_factor=1.0,
|
|
scale_by_std=False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
|
self.scale_by_std = scale_by_std
|
|
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
|
# for backwards compatibility after implementation of DiffusionWrapper
|
|
if conditioning_key is None:
|
|
conditioning_key = "concat" if concat_mode else "crossattn"
|
|
ckpt_path = kwargs.pop("ckpt_path", None)
|
|
ignore_keys = kwargs.pop("ignore_keys", [])
|
|
super().__init__()
|
|
self.concat_mode = concat_mode
|
|
self.cond_stage_trainable = cond_stage_trainable
|
|
self.cond_stage_key = cond_stage_key
|
|
try:
|
|
self.num_downs = len(first_stage_config.params.ddconfig.ch_mult) - 1
|
|
except:
|
|
self.num_downs = 0
|
|
if not scale_by_std:
|
|
self.scale_factor = scale_factor
|
|
self.instantiate_first_stage(first_stage_config)
|
|
self.cond_stage_forward = cond_stage_forward
|
|
self.clip_denoised = False
|
|
self.bbox_tokenizer = None
|
|
|
|
self.restarted_from_ckpt = False
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys)
|
|
self.restarted_from_ckpt = True
|
|
|
|
def instantiate_first_stage(self, config):
|
|
model = instantiate_from_config(config)
|
|
self.first_stage_model = model.eval()
|
|
self.first_stage_model.train = disabled_train
|
|
for param in self.first_stage_model.parameters():
|
|
param.requires_grad = False
|
|
|
|
def get_first_stage_encoding(self, encoder_posterior):
|
|
if isinstance(encoder_posterior, DiagonalGaussianDistribution):
|
|
z = encoder_posterior.sample()
|
|
elif isinstance(encoder_posterior, torch.Tensor):
|
|
z = encoder_posterior
|
|
else:
|
|
raise NotImplementedError(
|
|
f"encoder_posterior of type '{type(encoder_posterior)}' not yet implemented"
|
|
)
|
|
return self.scale_factor * z
|
|
|
|
@torch.no_grad()
|
|
def decode_first_stage(self, z, predict_cids=False, force_not_quantize=False):
|
|
if predict_cids:
|
|
if z.dim() == 4:
|
|
z = torch.argmax(z.exp(), dim=1).long()
|
|
z = self.first_stage_model.quantize.get_codebook_entry(z, shape=None)
|
|
z = rearrange(z, "b h w c -> b c h w").contiguous()
|
|
|
|
z = 1.0 / self.scale_factor * z
|
|
|
|
if hasattr(self, "split_input_params"):
|
|
if isinstance(self.first_stage_model, VQModelInterface):
|
|
return self.first_stage_model.decode(
|
|
z, force_not_quantize=predict_cids or force_not_quantize
|
|
)
|
|
else:
|
|
return self.first_stage_model.decode(z)
|
|
|
|
else:
|
|
if isinstance(self.first_stage_model, VQModelInterface):
|
|
return self.first_stage_model.decode(
|
|
z, force_not_quantize=predict_cids or force_not_quantize
|
|
)
|
|
else:
|
|
return self.first_stage_model.decode(z)
|
|
|
|
@torch.no_grad()
|
|
def encode_first_stage(self, x):
|
|
if hasattr(self, "split_input_params"):
|
|
if self.split_input_params["patch_distributed_vq"]:
|
|
ks = self.split_input_params["ks"] # eg. (128, 128)
|
|
stride = self.split_input_params["stride"] # eg. (64, 64)
|
|
df = self.split_input_params["vqf"]
|
|
self.split_input_params["original_image_size"] = x.shape[-2:]
|
|
bs, nc, h, w = x.shape
|
|
if ks[0] > h or ks[1] > w:
|
|
ks = (min(ks[0], h), min(ks[1], w))
|
|
print("reducing Kernel")
|
|
|
|
if stride[0] > h or stride[1] > w:
|
|
stride = (min(stride[0], h), min(stride[1], w))
|
|
print("reducing stride")
|
|
|
|
fold, unfold, normalization, weighting = self.get_fold_unfold(
|
|
x, ks, stride, df=df
|
|
)
|
|
z = unfold(x) # (bn, nc * prod(**ks), L)
|
|
# Reshape to img shape
|
|
z = z.view(
|
|
(z.shape[0], -1, ks[0], ks[1], z.shape[-1])
|
|
) # (bn, nc, ks[0], ks[1], L )
|
|
|
|
output_list = [
|
|
self.first_stage_model.encode(z[:, :, :, :, i])
|
|
for i in range(z.shape[-1])
|
|
]
|
|
|
|
o = torch.stack(output_list, axis=-1)
|
|
o = o * weighting
|
|
|
|
# Reverse reshape to img shape
|
|
o = o.view((o.shape[0], -1, o.shape[-1])) # (bn, nc * ks[0] * ks[1], L)
|
|
# stitch crops together
|
|
decoded = fold(o)
|
|
decoded = decoded / normalization
|
|
return decoded
|
|
|
|
else:
|
|
return self.first_stage_model.encode(x)
|
|
else:
|
|
return self.first_stage_model.encode(x)
|
|
|
|
|
|
class CondStage(DDPM):
|
|
"""main class"""
|
|
|
|
def __init__(
|
|
self,
|
|
cond_stage_config,
|
|
num_timesteps_cond=None,
|
|
cond_stage_key="image",
|
|
cond_stage_trainable=False,
|
|
concat_mode=True,
|
|
cond_stage_forward=None,
|
|
conditioning_key=None,
|
|
scale_factor=1.0,
|
|
scale_by_std=False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
|
self.scale_by_std = scale_by_std
|
|
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
|
# for backwards compatibility after implementation of DiffusionWrapper
|
|
if conditioning_key is None:
|
|
conditioning_key = "concat" if concat_mode else "crossattn"
|
|
if cond_stage_config == "__is_unconditional__":
|
|
conditioning_key = None
|
|
ckpt_path = kwargs.pop("ckpt_path", None)
|
|
ignore_keys = kwargs.pop("ignore_keys", [])
|
|
super().__init__()
|
|
self.concat_mode = concat_mode
|
|
self.cond_stage_trainable = cond_stage_trainable
|
|
self.cond_stage_key = cond_stage_key
|
|
self.num_downs = 0
|
|
if not scale_by_std:
|
|
self.scale_factor = scale_factor
|
|
self.instantiate_cond_stage(cond_stage_config)
|
|
self.cond_stage_forward = cond_stage_forward
|
|
self.clip_denoised = False
|
|
self.bbox_tokenizer = None
|
|
|
|
self.restarted_from_ckpt = False
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys)
|
|
self.restarted_from_ckpt = True
|
|
|
|
def instantiate_cond_stage(self, config):
|
|
if not self.cond_stage_trainable:
|
|
if config == "__is_first_stage__":
|
|
print("Using first stage also as cond stage.")
|
|
self.cond_stage_model = self.first_stage_model
|
|
elif config == "__is_unconditional__":
|
|
print(f"Training {self.__class__.__name__} as an unconditional model.")
|
|
self.cond_stage_model = None
|
|
# self.be_unconditional = True
|
|
else:
|
|
model = instantiate_from_config(config)
|
|
self.cond_stage_model = model.eval()
|
|
self.cond_stage_model.train = disabled_train
|
|
for param in self.cond_stage_model.parameters():
|
|
param.requires_grad = False
|
|
else:
|
|
assert config != "__is_first_stage__"
|
|
assert config != "__is_unconditional__"
|
|
model = instantiate_from_config(config)
|
|
self.cond_stage_model = model
|
|
|
|
def get_learned_conditioning(self, c):
|
|
if self.cond_stage_forward is None:
|
|
if hasattr(self.cond_stage_model, "encode") and callable(
|
|
self.cond_stage_model.encode
|
|
):
|
|
c = self.cond_stage_model.encode(c)
|
|
if isinstance(c, DiagonalGaussianDistribution):
|
|
c = c.mode()
|
|
else:
|
|
c = self.cond_stage_model(c)
|
|
else:
|
|
assert hasattr(self.cond_stage_model, self.cond_stage_forward)
|
|
c = getattr(self.cond_stage_model, self.cond_stage_forward)(c)
|
|
return c
|
|
|
|
|
|
class DiffusionWrapper(pl.LightningModule):
|
|
def __init__(self, diff_model_config):
|
|
super().__init__()
|
|
self.diffusion_model = instantiate_from_config(diff_model_config)
|
|
|
|
def forward(self, x, t, cc):
|
|
out = self.diffusion_model(x, t, context=cc)
|
|
return out
|
|
|
|
|
|
class DiffusionWrapperOut(pl.LightningModule):
|
|
def __init__(self, diff_model_config):
|
|
super().__init__()
|
|
self.diffusion_model = instantiate_from_config(diff_model_config)
|
|
|
|
def forward(self, h, emb, tp, hs, cc):
|
|
return self.diffusion_model(h, emb, tp, hs, context=cc)
|
|
|
|
|
|
class UNet(DDPM):
|
|
"""main class"""
|
|
|
|
def __init__(
|
|
self,
|
|
unetConfigEncode,
|
|
unetConfigDecode,
|
|
num_timesteps_cond=None,
|
|
cond_stage_key="image",
|
|
cond_stage_trainable=False,
|
|
concat_mode=True,
|
|
cond_stage_forward=None,
|
|
conditioning_key=None,
|
|
scale_factor=1.0,
|
|
unet_bs=1,
|
|
scale_by_std=False,
|
|
*args,
|
|
**kwargs,
|
|
):
|
|
self.num_timesteps_cond = default(num_timesteps_cond, 1)
|
|
self.scale_by_std = scale_by_std
|
|
assert self.num_timesteps_cond <= kwargs["timesteps"]
|
|
# for backwards compatibility after implementation of DiffusionWrapper
|
|
if conditioning_key is None:
|
|
conditioning_key = "concat" if concat_mode else "crossattn"
|
|
ckpt_path = kwargs.pop("ckpt_path", None)
|
|
ignore_keys = kwargs.pop("ignore_keys", [])
|
|
super().__init__(conditioning_key=conditioning_key, *args, **kwargs)
|
|
self.concat_mode = concat_mode
|
|
self.cond_stage_trainable = cond_stage_trainable
|
|
self.cond_stage_key = cond_stage_key
|
|
self.num_downs = 0
|
|
self.cdevice = "cuda"
|
|
self.unetConfigEncode = unetConfigEncode
|
|
self.unetConfigDecode = unetConfigDecode
|
|
if not scale_by_std:
|
|
self.scale_factor = scale_factor
|
|
else:
|
|
self.register_buffer("scale_factor", torch.tensor(scale_factor))
|
|
self.cond_stage_forward = cond_stage_forward
|
|
self.clip_denoised = False
|
|
self.bbox_tokenizer = None
|
|
self.model1 = DiffusionWrapper(self.unetConfigEncode)
|
|
self.model2 = DiffusionWrapperOut(self.unetConfigDecode)
|
|
self.model1.eval()
|
|
self.model2.eval()
|
|
self.turbo = False
|
|
self.unet_bs = unet_bs
|
|
self.restarted_from_ckpt = False
|
|
if ckpt_path is not None:
|
|
self.init_from_ckpt(ckpt_path, ignore_keys)
|
|
self.restarted_from_ckpt = True
|
|
|
|
def make_cond_schedule(
|
|
self,
|
|
):
|
|
self.cond_ids = torch.full(
|
|
size=(self.num_timesteps,),
|
|
fill_value=self.num_timesteps - 1,
|
|
dtype=torch.long,
|
|
)
|
|
ids = torch.round(
|
|
torch.linspace(0, self.num_timesteps - 1, self.num_timesteps_cond)
|
|
).long()
|
|
self.cond_ids[: self.num_timesteps_cond] = ids
|
|
|
|
@rank_zero_only
|
|
@torch.no_grad()
|
|
def on_train_batch_start(self, batch, batch_idx):
|
|
# only for very first batch
|
|
if (
|
|
self.scale_by_std
|
|
and self.current_epoch == 0
|
|
and self.global_step == 0
|
|
and batch_idx == 0
|
|
and not self.restarted_from_ckpt
|
|
):
|
|
assert (
|
|
self.scale_factor == 1.0
|
|
), "rather not use custom rescaling and std-rescaling simultaneously"
|
|
# set rescale weight to 1./std of encodings
|
|
print("### USING STD-RESCALING ###")
|
|
x = super().get_input(batch, self.first_stage_key)
|
|
x = x.to(self.cdevice)
|
|
encoder_posterior = self.encode_first_stage(x)
|
|
z = self.get_first_stage_encoding(encoder_posterior).detach()
|
|
del self.scale_factor
|
|
self.register_buffer("scale_factor", 1.0 / z.flatten().std())
|
|
print(f"setting self.scale_factor to {self.scale_factor}")
|
|
print("### USING STD-RESCALING ###")
|
|
|
|
def apply_model(self, x_noisy, t, cond, return_ids=False):
|
|
if not self.turbo:
|
|
self.model1.to(self.cdevice)
|
|
|
|
step = self.unet_bs
|
|
h, emb, hs = self.model1(x_noisy[0:step], t[:step], cond[:step])
|
|
bs = cond.shape[0]
|
|
|
|
# assert bs%2 == 0
|
|
lenhs = len(hs)
|
|
|
|
for i in range(step, bs, step):
|
|
h_temp, emb_temp, hs_temp = self.model1(
|
|
x_noisy[i : i + step], t[i : i + step], cond[i : i + step]
|
|
)
|
|
h = torch.cat((h, h_temp))
|
|
emb = torch.cat((emb, emb_temp))
|
|
for j in range(lenhs):
|
|
hs[j] = torch.cat((hs[j], hs_temp[j]))
|
|
|
|
if not self.turbo:
|
|
self.model1.to("cpu")
|
|
self.model2.to(self.cdevice)
|
|
|
|
hs_temp = [hs[j][:step] for j in range(lenhs)]
|
|
x_recon = self.model2(h[:step], emb[:step], x_noisy.dtype, hs_temp, cond[:step])
|
|
|
|
for i in range(step, bs, step):
|
|
hs_temp = [hs[j][i : i + step] for j in range(lenhs)]
|
|
x_recon1 = self.model2(
|
|
h[i : i + step],
|
|
emb[i : i + step],
|
|
x_noisy.dtype,
|
|
hs_temp,
|
|
cond[i : i + step],
|
|
)
|
|
x_recon = torch.cat((x_recon, x_recon1))
|
|
|
|
if not self.turbo:
|
|
self.model2.to("cpu")
|
|
|
|
if isinstance(x_recon, tuple) and not return_ids:
|
|
return x_recon[0]
|
|
else:
|
|
return x_recon
|
|
|
|
def register_buffer1(self, name, attr):
|
|
if type(attr) == torch.Tensor:
|
|
if attr.device != torch.device(self.cdevice):
|
|
attr = attr.to(torch.device(self.cdevice))
|
|
setattr(self, name, attr)
|
|
|
|
def make_schedule(
|
|
self, ddim_num_steps, ddim_discretize="uniform", ddim_eta=0.0, verbose=True
|
|
):
|
|
self.ddim_timesteps = make_ddim_timesteps(
|
|
ddim_discr_method=ddim_discretize,
|
|
num_ddim_timesteps=ddim_num_steps,
|
|
num_ddpm_timesteps=self.num_timesteps,
|
|
verbose=verbose,
|
|
)
|
|
|
|
assert (
|
|
self.alphas_cumprod.shape[0] == self.num_timesteps
|
|
), "alphas have to be defined for each timestep"
|
|
|
|
def to_torch(x):
|
|
return x.to(self.cdevice)
|
|
|
|
self.register_buffer1("betas", to_torch(self.betas))
|
|
self.register_buffer1("alphas_cumprod", to_torch(self.alphas_cumprod))
|
|
# ddim sampling parameters
|
|
ddim_sigmas, ddim_alphas, ddim_alphas_prev = make_ddim_sampling_parameters(
|
|
alphacums=self.alphas_cumprod.cpu(),
|
|
ddim_timesteps=self.ddim_timesteps,
|
|
eta=ddim_eta,
|
|
verbose=verbose,
|
|
)
|
|
self.register_buffer1("ddim_sigmas", ddim_sigmas)
|
|
self.register_buffer1("ddim_alphas", ddim_alphas)
|
|
self.register_buffer1("ddim_alphas_prev", ddim_alphas_prev)
|
|
self.register_buffer1("ddim_sqrt_one_minus_alphas", np.sqrt(1.0 - ddim_alphas))
|
|
|
|
@torch.no_grad()
|
|
def sample(
|
|
self,
|
|
S,
|
|
conditioning,
|
|
x0=None,
|
|
shape=None,
|
|
seed=1234,
|
|
callback=None,
|
|
img_callback=None,
|
|
quantize_x0=False,
|
|
eta=0.0,
|
|
mask=None,
|
|
sampler="plms",
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
verbose=True,
|
|
x_T=None,
|
|
log_every_t=100,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
):
|
|
if self.turbo:
|
|
self.model1.to(self.cdevice)
|
|
self.model2.to(self.cdevice)
|
|
|
|
if x0 is None:
|
|
batch_size, b1, b2, b3 = shape
|
|
img_shape = (1, b1, b2, b3)
|
|
tens = []
|
|
print("seeds used = ", [seed + s for s in range(batch_size)])
|
|
for _ in range(batch_size):
|
|
torch.manual_seed(seed)
|
|
tens.append(torch.randn(img_shape, device=self.cdevice))
|
|
seed += 1
|
|
noise = torch.cat(tens)
|
|
del tens
|
|
|
|
x_latent = noise if x0 is None else x0
|
|
# sampling
|
|
|
|
if sampler == "plms":
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
|
|
print(f"Data shape for PLMS sampling is {shape}")
|
|
samples = self.plms_sampling(
|
|
conditioning,
|
|
batch_size,
|
|
x_latent,
|
|
callback=callback,
|
|
img_callback=img_callback,
|
|
quantize_denoised=quantize_x0,
|
|
mask=mask,
|
|
x0=x0,
|
|
ddim_use_original_steps=False,
|
|
noise_dropout=noise_dropout,
|
|
temperature=temperature,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
log_every_t=log_every_t,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
)
|
|
|
|
elif sampler == "ddim":
|
|
samples = self.ddim_sampling(
|
|
x_latent,
|
|
conditioning,
|
|
S,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
mask=mask,
|
|
init_latent=x_T,
|
|
use_original_steps=False,
|
|
)
|
|
|
|
elif sampler == "euler":
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
|
|
samples = self.euler_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
elif sampler == "euler_a":
|
|
self.make_schedule(ddim_num_steps=S, ddim_eta=eta, verbose=False)
|
|
samples = self.euler_ancestral_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
|
|
elif sampler == "dpm2":
|
|
samples = self.dpm_2_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
elif sampler == "heun":
|
|
samples = self.heun_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
|
|
elif sampler == "dpm2_a":
|
|
samples = self.dpm_2_ancestral_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
|
|
elif sampler == "lms":
|
|
samples = self.lms_sampling(
|
|
self.alphas_cumprod,
|
|
x_latent,
|
|
S,
|
|
conditioning,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
)
|
|
|
|
if self.turbo:
|
|
self.model1.to("cpu")
|
|
self.model2.to("cpu")
|
|
|
|
return samples
|
|
|
|
@torch.no_grad()
|
|
def plms_sampling(
|
|
self,
|
|
cond,
|
|
b,
|
|
img,
|
|
ddim_use_original_steps=False,
|
|
callback=None,
|
|
quantize_denoised=False,
|
|
mask=None,
|
|
x0=None,
|
|
img_callback=None,
|
|
log_every_t=100,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
):
|
|
device = self.betas.device
|
|
timesteps = self.ddim_timesteps
|
|
time_range = np.flip(timesteps)
|
|
total_steps = timesteps.shape[0]
|
|
print(f"Running PLMS Sampling with {total_steps} timesteps")
|
|
|
|
iterator = tqdm(time_range, desc="PLMS Sampler", total=total_steps)
|
|
old_eps = []
|
|
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full((b,), step, device=device, dtype=torch.long)
|
|
ts_next = torch.full(
|
|
(b,),
|
|
time_range[min(i + 1, len(time_range) - 1)],
|
|
device=device,
|
|
dtype=torch.long,
|
|
)
|
|
|
|
if mask is not None:
|
|
assert x0 is not None
|
|
img_orig = self.q_sample(x0, ts) # TODO: deterministic forward pass?
|
|
img = img_orig * mask + (1.0 - mask) * img
|
|
|
|
outs = self.p_sample_plms(
|
|
img,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
use_original_steps=ddim_use_original_steps,
|
|
quantize_denoised=quantize_denoised,
|
|
temperature=temperature,
|
|
noise_dropout=noise_dropout,
|
|
score_corrector=score_corrector,
|
|
corrector_kwargs=corrector_kwargs,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
old_eps=old_eps,
|
|
t_next=ts_next,
|
|
)
|
|
img, pred_x0, e_t = outs
|
|
old_eps.append(e_t)
|
|
if len(old_eps) >= 4:
|
|
old_eps.pop(0)
|
|
if callback:
|
|
callback(i)
|
|
if img_callback:
|
|
img_callback(pred_x0, i)
|
|
|
|
return img
|
|
|
|
@torch.no_grad()
|
|
def p_sample_plms(
|
|
self,
|
|
x,
|
|
c,
|
|
t,
|
|
index,
|
|
repeat_noise=False,
|
|
use_original_steps=False,
|
|
quantize_denoised=False,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
old_eps=None,
|
|
t_next=None,
|
|
):
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
def get_model_output(x, t):
|
|
if (
|
|
unconditional_conditioning is None
|
|
or unconditional_guidance_scale == 1.0
|
|
):
|
|
e_t = self.apply_model(x, t, c)
|
|
else:
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([t] * 2)
|
|
c_in = torch.cat([unconditional_conditioning, c])
|
|
e_t_uncond, e_t = self.apply_model(x_in, t_in, c_in).chunk(2)
|
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
if score_corrector is not None:
|
|
assert self.parameterization == "eps"
|
|
e_t = score_corrector.modify_score(
|
|
self.model, e_t, x, t, c, **corrector_kwargs
|
|
)
|
|
|
|
return e_t
|
|
|
|
alphas = self.ddim_alphas
|
|
alphas_prev = self.ddim_alphas_prev
|
|
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
|
|
sigmas = self.ddim_sigmas
|
|
|
|
def get_x_prev_and_pred_x0(e_t, index):
|
|
# select parameters corresponding to the currently considered timestep
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
|
sqrt_one_minus_at = torch.full(
|
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
|
)
|
|
|
|
# current prediction for x_0
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
if quantize_denoised:
|
|
pred_x0, _, *_ = self.first_stage_model.quantize(pred_x0)
|
|
# direction pointing to x_t
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
|
if noise_dropout > 0.0:
|
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
|
return x_prev, pred_x0
|
|
|
|
e_t = get_model_output(x, t)
|
|
if len(old_eps) == 0:
|
|
# Pseudo Improved Euler (2nd order)
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t, index)
|
|
e_t_next = get_model_output(x_prev, t_next)
|
|
e_t_prime = (e_t + e_t_next) / 2
|
|
elif len(old_eps) == 1:
|
|
# 2nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (3 * e_t - old_eps[-1]) / 2
|
|
elif len(old_eps) == 2:
|
|
# 3nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (23 * e_t - 16 * old_eps[-1] + 5 * old_eps[-2]) / 12
|
|
elif len(old_eps) >= 3:
|
|
# 4nd order Pseudo Linear Multistep (Adams-Bashforth)
|
|
e_t_prime = (
|
|
55 * e_t - 59 * old_eps[-1] + 37 * old_eps[-2] - 9 * old_eps[-3]
|
|
) / 24
|
|
|
|
x_prev, pred_x0 = get_x_prev_and_pred_x0(e_t_prime, index)
|
|
|
|
return x_prev, pred_x0, e_t
|
|
|
|
@torch.no_grad()
|
|
def stochastic_encode(
|
|
self, x0, t, seed, ddim_eta, ddim_steps, use_original_steps=False, noise=None
|
|
):
|
|
# fast, but does not allow for exact reconstruction
|
|
# t serves as an index to gather the correct alphas
|
|
self.make_schedule(ddim_num_steps=ddim_steps, ddim_eta=ddim_eta, verbose=False)
|
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
|
|
|
if noise is None:
|
|
b0, b1, b2, b3 = x0.shape
|
|
img_shape = (1, b1, b2, b3)
|
|
tens = []
|
|
print("seeds used = ", [seed + s for s in range(b0)])
|
|
for _ in range(b0):
|
|
torch.manual_seed(seed)
|
|
tens.append(torch.randn(img_shape, device=x0.device))
|
|
seed += 1
|
|
noise = torch.cat(tens)
|
|
del tens
|
|
return (
|
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
|
+ extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape) * noise
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def add_noise(self, x0, t):
|
|
sqrt_alphas_cumprod = torch.sqrt(self.ddim_alphas)
|
|
noise = torch.randn(x0.shape, device=x0.device)
|
|
|
|
# print(extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape),
|
|
# extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape))
|
|
return (
|
|
extract_into_tensor(sqrt_alphas_cumprod, t, x0.shape) * x0
|
|
+ extract_into_tensor(self.ddim_sqrt_one_minus_alphas, t, x0.shape) * noise
|
|
)
|
|
|
|
@torch.no_grad()
|
|
def ddim_sampling(
|
|
self,
|
|
x_latent,
|
|
cond,
|
|
t_start,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
mask=None,
|
|
init_latent=None,
|
|
use_original_steps=False,
|
|
):
|
|
timesteps = self.ddim_timesteps
|
|
timesteps = timesteps[:t_start]
|
|
time_range = np.flip(timesteps)
|
|
total_steps = timesteps.shape[0]
|
|
print(f"Running DDIM Sampling with {total_steps} timesteps")
|
|
|
|
iterator = tqdm(time_range, desc="Decoding image", total=total_steps)
|
|
x_dec = x_latent
|
|
x0 = init_latent
|
|
for i, step in enumerate(iterator):
|
|
index = total_steps - i - 1
|
|
ts = torch.full(
|
|
(x_latent.shape[0],), step, device=x_latent.device, dtype=torch.long
|
|
)
|
|
|
|
if mask is not None:
|
|
# x0_noisy = self.add_noise(mask, torch.tensor([index] * x0.shape[0]).to(self.cdevice))
|
|
x0_noisy = x0
|
|
x_dec = x0_noisy * mask + (1.0 - mask) * x_dec
|
|
|
|
x_dec = self.p_sample_ddim(
|
|
x_dec,
|
|
cond,
|
|
ts,
|
|
index=index,
|
|
use_original_steps=use_original_steps,
|
|
unconditional_guidance_scale=unconditional_guidance_scale,
|
|
unconditional_conditioning=unconditional_conditioning,
|
|
)
|
|
|
|
if mask is not None:
|
|
return x0 * mask + (1.0 - mask) * x_dec
|
|
|
|
return x_dec
|
|
|
|
@torch.no_grad()
|
|
def p_sample_ddim(
|
|
self,
|
|
x,
|
|
c,
|
|
t,
|
|
index,
|
|
repeat_noise=False,
|
|
use_original_steps=False,
|
|
quantize_denoised=False,
|
|
temperature=1.0,
|
|
noise_dropout=0.0,
|
|
score_corrector=None,
|
|
corrector_kwargs=None,
|
|
unconditional_guidance_scale=1.0,
|
|
unconditional_conditioning=None,
|
|
):
|
|
b, *_, device = *x.shape, x.device
|
|
|
|
if unconditional_conditioning is None or unconditional_guidance_scale == 1.0:
|
|
e_t = self.apply_model(x, t, c)
|
|
else:
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([t] * 2)
|
|
c_in = torch.cat([unconditional_conditioning, c])
|
|
e_t_uncond, e_t = self.apply_model(x_in, t_in, c_in).chunk(2)
|
|
e_t = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
if score_corrector is not None:
|
|
assert self.model.parameterization == "eps"
|
|
e_t = score_corrector.modify_score(
|
|
self.model, e_t, x, t, c, **corrector_kwargs
|
|
)
|
|
|
|
alphas = self.ddim_alphas
|
|
alphas_prev = self.ddim_alphas_prev
|
|
sqrt_one_minus_alphas = self.ddim_sqrt_one_minus_alphas
|
|
sigmas = self.ddim_sigmas
|
|
# select parameters corresponding to the currently considered timestep
|
|
a_t = torch.full((b, 1, 1, 1), alphas[index], device=device)
|
|
a_prev = torch.full((b, 1, 1, 1), alphas_prev[index], device=device)
|
|
sigma_t = torch.full((b, 1, 1, 1), sigmas[index], device=device)
|
|
sqrt_one_minus_at = torch.full(
|
|
(b, 1, 1, 1), sqrt_one_minus_alphas[index], device=device
|
|
)
|
|
|
|
# current prediction for x_0
|
|
pred_x0 = (x - sqrt_one_minus_at * e_t) / a_t.sqrt()
|
|
if quantize_denoised:
|
|
pred_x0, _, *_ = self.first_stage_model.quantize(pred_x0)
|
|
# direction pointing to x_t
|
|
dir_xt = (1.0 - a_prev - sigma_t**2).sqrt() * e_t
|
|
noise = sigma_t * noise_like(x.shape, device, repeat_noise) * temperature
|
|
if noise_dropout > 0.0:
|
|
noise = torch.nn.functional.dropout(noise, p=noise_dropout)
|
|
x_prev = a_prev.sqrt() * pred_x0 + dir_xt + noise
|
|
return x_prev
|
|
|
|
@torch.no_grad()
|
|
def euler_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
s_churn=0.0,
|
|
s_tmin=0.0,
|
|
s_tmax=float("inf"),
|
|
s_noise=1.0,
|
|
):
|
|
"""Implements Algorithm 2 (Euler steps) from Karras et al. (2022)."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
cvd = CompVisDenoiser(ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
s_in = x.new_ones([x.shape[0]]).half()
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
gamma = (
|
|
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
|
|
if s_tmin <= sigmas[i] <= s_tmax
|
|
else 0.0
|
|
)
|
|
eps = torch.randn_like(x) * s_noise
|
|
sigma_hat = (sigmas[i] * (gamma + 1)).half()
|
|
if gamma > 0:
|
|
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
|
|
|
s_i = sigma_hat * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d = to_d(x, sigma_hat, denoised)
|
|
if callback is not None:
|
|
callback(
|
|
{
|
|
"x": x,
|
|
"i": i,
|
|
"sigma": sigmas[i],
|
|
"sigma_hat": sigma_hat,
|
|
"denoised": denoised,
|
|
}
|
|
)
|
|
dt = sigmas[i + 1] - sigma_hat
|
|
# Euler method
|
|
x = x + d * dt
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def euler_ancestral_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
):
|
|
"""Ancestral sampling with Euler method steps."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
cvd = CompVisDenoiser(ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
s_in = x.new_ones([x.shape[0]]).half()
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
s_i = sigmas[i] * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
|
if callback is not None:
|
|
callback(
|
|
{
|
|
"x": x,
|
|
"i": i,
|
|
"sigma": sigmas[i],
|
|
"sigma_hat": sigmas[i],
|
|
"denoised": denoised,
|
|
}
|
|
)
|
|
d = to_d(x, sigmas[i], denoised)
|
|
# Euler method
|
|
dt = sigma_down - sigmas[i]
|
|
x = x + d * dt
|
|
x = x + torch.randn_like(x) * sigma_up
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def heun_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
s_churn=0.0,
|
|
s_tmin=0.0,
|
|
s_tmax=float("inf"),
|
|
s_noise=1.0,
|
|
):
|
|
"""Implements Algorithm 2 (Heun steps) from Karras et al. (2022)."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
cvd = CompVisDenoiser(alphas_cumprod=ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
s_in = x.new_ones([x.shape[0]]).half()
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
gamma = (
|
|
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
|
|
if s_tmin <= sigmas[i] <= s_tmax
|
|
else 0.0
|
|
)
|
|
eps = torch.randn_like(x) * s_noise
|
|
sigma_hat = (sigmas[i] * (gamma + 1)).half()
|
|
if gamma > 0:
|
|
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
|
|
|
s_i = sigma_hat * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d = to_d(x, sigma_hat, denoised)
|
|
if callback is not None:
|
|
callback(
|
|
{
|
|
"x": x,
|
|
"i": i,
|
|
"sigma": sigmas[i],
|
|
"sigma_hat": sigma_hat,
|
|
"denoised": denoised,
|
|
}
|
|
)
|
|
dt = sigmas[i + 1] - sigma_hat
|
|
if sigmas[i + 1] == 0:
|
|
# Euler method
|
|
x = x + d * dt
|
|
else:
|
|
# Heun's method
|
|
x_2 = x + d * dt
|
|
s_i = sigmas[i + 1] * s_in
|
|
x_in = torch.cat([x_2] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised_2 = e_t_uncond + unconditional_guidance_scale * (
|
|
e_t - e_t_uncond
|
|
)
|
|
|
|
d_2 = to_d(x_2, sigmas[i + 1], denoised_2)
|
|
d_prime = (d + d_2) / 2
|
|
x = x + d_prime * dt
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def dpm_2_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
s_churn=0.0,
|
|
s_tmin=0.0,
|
|
s_tmax=float("inf"),
|
|
s_noise=1.0,
|
|
):
|
|
"""A sampler inspired by DPM-Solver-2 and Algorithm 2 from Karras et al. (2022)."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
cvd = CompVisDenoiser(ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
s_in = x.new_ones([x.shape[0]]).half()
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
gamma = (
|
|
min(s_churn / (len(sigmas) - 1), 2**0.5 - 1)
|
|
if s_tmin <= sigmas[i] <= s_tmax
|
|
else 0.0
|
|
)
|
|
eps = torch.randn_like(x) * s_noise
|
|
sigma_hat = sigmas[i] * (gamma + 1)
|
|
if gamma > 0:
|
|
x = x + eps * (sigma_hat**2 - sigmas[i] ** 2) ** 0.5
|
|
|
|
s_i = sigma_hat * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d = to_d(x, sigma_hat, denoised)
|
|
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
|
sigma_mid = ((sigma_hat ** (1 / 3) + sigmas[i + 1] ** (1 / 3)) / 2) ** 3
|
|
dt_1 = sigma_mid - sigma_hat
|
|
dt_2 = sigmas[i + 1] - sigma_hat
|
|
x_2 = x + d * dt_1
|
|
|
|
s_i = sigma_mid * s_in
|
|
x_in = torch.cat([x_2] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised_2 = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
|
x = x + d_2 * dt_2
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def dpm_2_ancestral_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
):
|
|
"""Ancestral sampling with DPM-Solver inspired second-order steps."""
|
|
extra_args = {} if extra_args is None else extra_args
|
|
|
|
cvd = CompVisDenoiser(ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
s_in = x.new_ones([x.shape[0]]).half()
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
s_i = sigmas[i] * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
sigma_down, sigma_up = get_ancestral_step(sigmas[i], sigmas[i + 1])
|
|
if callback is not None:
|
|
callback(
|
|
{
|
|
"x": x,
|
|
"i": i,
|
|
"sigma": sigmas[i],
|
|
"sigma_hat": sigmas[i],
|
|
"denoised": denoised,
|
|
}
|
|
)
|
|
d = to_d(x, sigmas[i], denoised)
|
|
# Midpoint method, where the midpoint is chosen according to a rho=3 Karras schedule
|
|
sigma_mid = ((sigmas[i] ** (1 / 3) + sigma_down ** (1 / 3)) / 2) ** 3
|
|
dt_1 = sigma_mid - sigmas[i]
|
|
dt_2 = sigma_down - sigmas[i]
|
|
x_2 = x + d * dt_1
|
|
|
|
s_i = sigma_mid * s_in
|
|
x_in = torch.cat([x_2] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised_2 = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d_2 = to_d(x_2, sigma_mid, denoised_2)
|
|
x = x + d_2 * dt_2
|
|
x = x + torch.randn_like(x) * sigma_up
|
|
return x
|
|
|
|
@torch.no_grad()
|
|
def lms_sampling(
|
|
self,
|
|
ac,
|
|
x,
|
|
S,
|
|
cond,
|
|
unconditional_conditioning=None,
|
|
unconditional_guidance_scale=1,
|
|
extra_args=None,
|
|
callback=None,
|
|
disable=None,
|
|
order=4,
|
|
):
|
|
extra_args = {} if extra_args is None else extra_args
|
|
s_in = x.new_ones([x.shape[0]])
|
|
|
|
cvd = CompVisDenoiser(ac)
|
|
sigmas = cvd.get_sigmas(S)
|
|
x = x * sigmas[0]
|
|
|
|
ds = []
|
|
for i in trange(len(sigmas) - 1, disable=disable):
|
|
s_i = sigmas[i] * s_in
|
|
x_in = torch.cat([x] * 2)
|
|
t_in = torch.cat([s_i] * 2)
|
|
cond_in = torch.cat([unconditional_conditioning, cond])
|
|
c_out, c_in = [
|
|
append_dims(tmp, x_in.ndim) for tmp in cvd.get_scalings(t_in)
|
|
]
|
|
eps = self.apply_model(x_in * c_in, cvd.sigma_to_t(t_in), cond_in)
|
|
e_t_uncond, e_t = (x_in + eps * c_out).chunk(2)
|
|
denoised = e_t_uncond + unconditional_guidance_scale * (e_t - e_t_uncond)
|
|
|
|
d = to_d(x, sigmas[i], denoised)
|
|
ds.append(d)
|
|
if len(ds) > order:
|
|
ds.pop(0)
|
|
if callback is not None:
|
|
callback(
|
|
{
|
|
"x": x,
|
|
"i": i,
|
|
"sigma": sigmas[i],
|
|
"sigma_hat": sigmas[i],
|
|
"denoised": denoised,
|
|
}
|
|
)
|
|
cur_order = min(i + 1, order)
|
|
coeffs = [
|
|
linear_multistep_coeff(cur_order, sigmas.cpu(), i, j)
|
|
for j in range(cur_order)
|
|
]
|
|
x = x + sum(coeff * d for coeff, d in zip(coeffs, reversed(ds)))
|
|
return x
|