stable-diffusion-webui/ldm/models/blip_vqa.py
2023-06-23 02:58:24 +00:00

236 lines
7.9 KiB
Python

from models.med import BertConfig, BertModel, BertLMHeadModel
from models.blip import create_vit, init_tokenizer, load_checkpoint
import torch
from torch import nn
import torch.nn.functional as F
import numpy as np
class BLIP_VQA(nn.Module):
def __init__(
self,
med_config="configs/med_config.json",
image_size=480,
vit="base",
vit_grad_ckpt=False,
vit_ckpt_layer=0,
):
"""
Args:
med_config (str): path for the mixture of encoder-decoder model's configuration file
image_size (int): input image size
vit (str): model size of vision transformer
"""
super().__init__()
self.visual_encoder, vision_width = create_vit(
vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1
)
self.tokenizer = init_tokenizer()
encoder_config = BertConfig.from_json_file(med_config)
encoder_config.encoder_width = vision_width
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
decoder_config = BertConfig.from_json_file(med_config)
self.text_decoder = BertLMHeadModel(config=decoder_config)
def forward(
self,
image,
question,
answer=None,
n=None,
weights=None,
train=True,
inference="rank",
k_test=128,
):
image_embeds = self.visual_encoder(image)
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
image.device
)
question = self.tokenizer(
question,
padding="longest",
truncation=True,
max_length=35,
return_tensors="pt",
).to(image.device)
question.input_ids[:, 0] = self.tokenizer.enc_token_id
if train:
"""
n: number of answers for each question
weights: weight for each answer
"""
answer = self.tokenizer(answer, padding="longest", return_tensors="pt").to(
image.device
)
answer.input_ids[:, 0] = self.tokenizer.bos_token_id
answer_targets = answer.input_ids.masked_fill(
answer.input_ids == self.tokenizer.pad_token_id, -100
)
question_output = self.text_encoder(
question.input_ids,
attention_mask=question.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
question_states = []
question_atts = []
for b, n in enumerate(n):
question_states += [question_output.last_hidden_state[b]] * n
question_atts += [question.attention_mask[b]] * n
question_states = torch.stack(question_states, 0)
question_atts = torch.stack(question_atts, 0)
answer_output = self.text_decoder(
answer.input_ids,
attention_mask=answer.attention_mask,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=answer_targets,
return_dict=True,
reduction="none",
)
loss = weights * answer_output.loss
loss = loss.sum() / image.size(0)
return loss
else:
question_output = self.text_encoder(
question.input_ids,
attention_mask=question.attention_mask,
encoder_hidden_states=image_embeds,
encoder_attention_mask=image_atts,
return_dict=True,
)
if inference == "generate":
num_beams = 3
question_states = question_output.last_hidden_state.repeat_interleave(
num_beams, dim=0
)
question_atts = torch.ones(
question_states.size()[:-1], dtype=torch.long
).to(question_states.device)
model_kwargs = {
"encoder_hidden_states": question_states,
"encoder_attention_mask": question_atts,
}
bos_ids = torch.full(
(image.size(0), 1),
fill_value=self.tokenizer.bos_token_id,
device=image.device,
)
outputs = self.text_decoder.generate(
input_ids=bos_ids,
max_length=10,
min_length=1,
num_beams=num_beams,
eos_token_id=self.tokenizer.sep_token_id,
pad_token_id=self.tokenizer.pad_token_id,
**model_kwargs
)
answers = []
for output in outputs:
answer = self.tokenizer.decode(output, skip_special_tokens=True)
answers.append(answer)
return answers
elif inference == "rank":
max_ids = self.rank_answer(
question_output.last_hidden_state,
question.attention_mask,
answer.input_ids,
answer.attention_mask,
k_test,
)
return max_ids
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
num_ques = question_states.size(0)
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
start_output = self.text_decoder(
start_ids,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
return_dict=True,
reduction="none",
)
logits = start_output.logits[:, 0, :] # first token's logit
# topk_probs: top-k probability
# topk_ids: [num_question, k]
answer_first_token = answer_ids[:, 1]
prob_first_token = F.softmax(logits, dim=1).index_select(
dim=1, index=answer_first_token
)
topk_probs, topk_ids = prob_first_token.topk(k, dim=1)
# answer input: [num_question*k, answer_len]
input_ids = []
input_atts = []
for b, topk_id in enumerate(topk_ids):
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
input_ids = torch.cat(input_ids, dim=0)
input_atts = torch.cat(input_atts, dim=0)
targets_ids = input_ids.masked_fill(
input_ids == self.tokenizer.pad_token_id, -100
)
# repeat encoder's output for top-k answers
question_states = tile(question_states, 0, k)
question_atts = tile(question_atts, 0, k)
output = self.text_decoder(
input_ids,
attention_mask=input_atts,
encoder_hidden_states=question_states,
encoder_attention_mask=question_atts,
labels=targets_ids,
return_dict=True,
reduction="none",
)
log_probs_sum = -output.loss
log_probs_sum = log_probs_sum.view(num_ques, k)
max_topk_ids = log_probs_sum.argmax(dim=1)
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
return max_ids
def blip_vqa(pretrained="", **kwargs):
model = BLIP_VQA(**kwargs)
if pretrained:
model, msg = load_checkpoint(model, pretrained)
# assert(len(msg.missing_keys)==0)
return model
def tile(x, dim, n_tile):
init_dim = x.size(dim)
repeat_idx = [1] * x.dim()
repeat_idx[dim] = n_tile
x = x.repeat(*(repeat_idx))
order_index = torch.LongTensor(
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
)
return torch.index_select(x, dim, order_index.to(x.device))