mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2025-01-07 14:18:48 +03:00
a9bc7eae19
for more information, see https://pre-commit.ci
236 lines
7.9 KiB
Python
236 lines
7.9 KiB
Python
from models.med import BertConfig, BertModel, BertLMHeadModel
|
|
from models.blip import create_vit, init_tokenizer, load_checkpoint
|
|
|
|
import torch
|
|
from torch import nn
|
|
import torch.nn.functional as F
|
|
import numpy as np
|
|
|
|
|
|
class BLIP_VQA(nn.Module):
|
|
def __init__(
|
|
self,
|
|
med_config="configs/med_config.json",
|
|
image_size=480,
|
|
vit="base",
|
|
vit_grad_ckpt=False,
|
|
vit_ckpt_layer=0,
|
|
):
|
|
"""
|
|
Args:
|
|
med_config (str): path for the mixture of encoder-decoder model's configuration file
|
|
image_size (int): input image size
|
|
vit (str): model size of vision transformer
|
|
"""
|
|
super().__init__()
|
|
|
|
self.visual_encoder, vision_width = create_vit(
|
|
vit, image_size, vit_grad_ckpt, vit_ckpt_layer, drop_path_rate=0.1
|
|
)
|
|
self.tokenizer = init_tokenizer()
|
|
|
|
encoder_config = BertConfig.from_json_file(med_config)
|
|
encoder_config.encoder_width = vision_width
|
|
self.text_encoder = BertModel(config=encoder_config, add_pooling_layer=False)
|
|
|
|
decoder_config = BertConfig.from_json_file(med_config)
|
|
self.text_decoder = BertLMHeadModel(config=decoder_config)
|
|
|
|
def forward(
|
|
self,
|
|
image,
|
|
question,
|
|
answer=None,
|
|
n=None,
|
|
weights=None,
|
|
train=True,
|
|
inference="rank",
|
|
k_test=128,
|
|
):
|
|
image_embeds = self.visual_encoder(image)
|
|
image_atts = torch.ones(image_embeds.size()[:-1], dtype=torch.long).to(
|
|
image.device
|
|
)
|
|
|
|
question = self.tokenizer(
|
|
question,
|
|
padding="longest",
|
|
truncation=True,
|
|
max_length=35,
|
|
return_tensors="pt",
|
|
).to(image.device)
|
|
question.input_ids[:, 0] = self.tokenizer.enc_token_id
|
|
|
|
if train:
|
|
"""
|
|
n: number of answers for each question
|
|
weights: weight for each answer
|
|
"""
|
|
answer = self.tokenizer(answer, padding="longest", return_tensors="pt").to(
|
|
image.device
|
|
)
|
|
answer.input_ids[:, 0] = self.tokenizer.bos_token_id
|
|
answer_targets = answer.input_ids.masked_fill(
|
|
answer.input_ids == self.tokenizer.pad_token_id, -100
|
|
)
|
|
|
|
question_output = self.text_encoder(
|
|
question.input_ids,
|
|
attention_mask=question.attention_mask,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
question_states = []
|
|
question_atts = []
|
|
for b, n in enumerate(n):
|
|
question_states += [question_output.last_hidden_state[b]] * n
|
|
question_atts += [question.attention_mask[b]] * n
|
|
question_states = torch.stack(question_states, 0)
|
|
question_atts = torch.stack(question_atts, 0)
|
|
|
|
answer_output = self.text_decoder(
|
|
answer.input_ids,
|
|
attention_mask=answer.attention_mask,
|
|
encoder_hidden_states=question_states,
|
|
encoder_attention_mask=question_atts,
|
|
labels=answer_targets,
|
|
return_dict=True,
|
|
reduction="none",
|
|
)
|
|
|
|
loss = weights * answer_output.loss
|
|
loss = loss.sum() / image.size(0)
|
|
|
|
return loss
|
|
|
|
else:
|
|
question_output = self.text_encoder(
|
|
question.input_ids,
|
|
attention_mask=question.attention_mask,
|
|
encoder_hidden_states=image_embeds,
|
|
encoder_attention_mask=image_atts,
|
|
return_dict=True,
|
|
)
|
|
|
|
if inference == "generate":
|
|
num_beams = 3
|
|
question_states = question_output.last_hidden_state.repeat_interleave(
|
|
num_beams, dim=0
|
|
)
|
|
question_atts = torch.ones(
|
|
question_states.size()[:-1], dtype=torch.long
|
|
).to(question_states.device)
|
|
model_kwargs = {
|
|
"encoder_hidden_states": question_states,
|
|
"encoder_attention_mask": question_atts,
|
|
}
|
|
|
|
bos_ids = torch.full(
|
|
(image.size(0), 1),
|
|
fill_value=self.tokenizer.bos_token_id,
|
|
device=image.device,
|
|
)
|
|
|
|
outputs = self.text_decoder.generate(
|
|
input_ids=bos_ids,
|
|
max_length=10,
|
|
min_length=1,
|
|
num_beams=num_beams,
|
|
eos_token_id=self.tokenizer.sep_token_id,
|
|
pad_token_id=self.tokenizer.pad_token_id,
|
|
**model_kwargs
|
|
)
|
|
|
|
answers = []
|
|
for output in outputs:
|
|
answer = self.tokenizer.decode(output, skip_special_tokens=True)
|
|
answers.append(answer)
|
|
return answers
|
|
|
|
elif inference == "rank":
|
|
max_ids = self.rank_answer(
|
|
question_output.last_hidden_state,
|
|
question.attention_mask,
|
|
answer.input_ids,
|
|
answer.attention_mask,
|
|
k_test,
|
|
)
|
|
return max_ids
|
|
|
|
def rank_answer(self, question_states, question_atts, answer_ids, answer_atts, k):
|
|
num_ques = question_states.size(0)
|
|
start_ids = answer_ids[0, 0].repeat(num_ques, 1) # bos token
|
|
|
|
start_output = self.text_decoder(
|
|
start_ids,
|
|
encoder_hidden_states=question_states,
|
|
encoder_attention_mask=question_atts,
|
|
return_dict=True,
|
|
reduction="none",
|
|
)
|
|
logits = start_output.logits[:, 0, :] # first token's logit
|
|
|
|
# topk_probs: top-k probability
|
|
# topk_ids: [num_question, k]
|
|
answer_first_token = answer_ids[:, 1]
|
|
prob_first_token = F.softmax(logits, dim=1).index_select(
|
|
dim=1, index=answer_first_token
|
|
)
|
|
topk_probs, topk_ids = prob_first_token.topk(k, dim=1)
|
|
|
|
# answer input: [num_question*k, answer_len]
|
|
input_ids = []
|
|
input_atts = []
|
|
for b, topk_id in enumerate(topk_ids):
|
|
input_ids.append(answer_ids.index_select(dim=0, index=topk_id))
|
|
input_atts.append(answer_atts.index_select(dim=0, index=topk_id))
|
|
input_ids = torch.cat(input_ids, dim=0)
|
|
input_atts = torch.cat(input_atts, dim=0)
|
|
|
|
targets_ids = input_ids.masked_fill(
|
|
input_ids == self.tokenizer.pad_token_id, -100
|
|
)
|
|
|
|
# repeat encoder's output for top-k answers
|
|
question_states = tile(question_states, 0, k)
|
|
question_atts = tile(question_atts, 0, k)
|
|
|
|
output = self.text_decoder(
|
|
input_ids,
|
|
attention_mask=input_atts,
|
|
encoder_hidden_states=question_states,
|
|
encoder_attention_mask=question_atts,
|
|
labels=targets_ids,
|
|
return_dict=True,
|
|
reduction="none",
|
|
)
|
|
|
|
log_probs_sum = -output.loss
|
|
log_probs_sum = log_probs_sum.view(num_ques, k)
|
|
|
|
max_topk_ids = log_probs_sum.argmax(dim=1)
|
|
max_ids = topk_ids[max_topk_ids >= 0, max_topk_ids]
|
|
|
|
return max_ids
|
|
|
|
|
|
def blip_vqa(pretrained="", **kwargs):
|
|
model = BLIP_VQA(**kwargs)
|
|
if pretrained:
|
|
model, msg = load_checkpoint(model, pretrained)
|
|
# assert(len(msg.missing_keys)==0)
|
|
return model
|
|
|
|
|
|
def tile(x, dim, n_tile):
|
|
init_dim = x.size(dim)
|
|
repeat_idx = [1] * x.dim()
|
|
repeat_idx[dim] = n_tile
|
|
x = x.repeat(*(repeat_idx))
|
|
order_index = torch.LongTensor(
|
|
np.concatenate([init_dim * np.arange(n_tile) + i for i in range(init_dim)])
|
|
)
|
|
return torch.index_select(x, dim, order_index.to(x.device))
|