mirror of
https://github.com/sd-webui/stable-diffusion-webui.git
synced 2024-12-16 17:56:52 +03:00
176 lines
6.4 KiB
Python
176 lines
6.4 KiB
Python
|
|
#@title Setup
|
|
#!pip3 install ftfy regex tqdm transformers==4.15.0 timm==0.4.12 fairscale==0.4.4
|
|
#!pip3 install git+https://github.com/openai/CLIP.git
|
|
#!git clone https://github.com/pharmapsychotic/clip-interrogator.git
|
|
#!git clone https://github.com/salesforce/BLIP
|
|
#%cd /content/BLIP
|
|
|
|
import clip
|
|
import gc
|
|
#import numpy as np
|
|
import os
|
|
import pandas as pd
|
|
import requests
|
|
import torch
|
|
#import torchvision.transforms as T
|
|
#import torchvision.transforms.functional as TF
|
|
|
|
from IPython.display import display
|
|
from PIL import Image
|
|
#from torch import nn
|
|
#from torch.nn import functional as F
|
|
from torchvision import transforms
|
|
from torchvision.transforms.functional import InterpolationMode
|
|
from ldm.models.blip import blip_decoder
|
|
|
|
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
|
|
|
|
blip_image_eval_size = 384
|
|
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth'
|
|
blip_model = blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base')
|
|
blip_model.eval()
|
|
blip_model = blip_model.to(device)
|
|
|
|
def generate_caption(pil_image):
|
|
gpu_image = transforms.Compose([
|
|
transforms.Resize((blip_image_eval_size, blip_image_eval_size), interpolation=InterpolationMode.BICUBIC),
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
|
])(image).unsqueeze(0).to(device)
|
|
|
|
with torch.no_grad():
|
|
caption = blip_model.generate(gpu_image, sample=False, num_beams=3, max_length=20, min_length=5)
|
|
return caption[0]
|
|
|
|
def load_list(filename):
|
|
with open(filename, 'r', encoding='utf-8', errors='replace') as f:
|
|
items = [line.strip() for line in f.readlines()]
|
|
return items
|
|
|
|
def rank(model, image_features, text_array, top_count=1):
|
|
top_count = min(top_count, len(text_array))
|
|
text_tokens = clip.tokenize([text for text in text_array]).cuda()
|
|
with torch.no_grad():
|
|
text_features = model.encode_text(text_tokens).float()
|
|
text_features /= text_features.norm(dim=-1, keepdim=True)
|
|
|
|
similarity = torch.zeros((1, len(text_array))).to(device)
|
|
for i in range(image_features.shape[0]):
|
|
similarity += (100.0 * image_features[i].unsqueeze(0) @ text_features.T).softmax(dim=-1)
|
|
similarity /= image_features.shape[0]
|
|
|
|
top_probs, top_labels = similarity.cpu().topk(top_count, dim=-1)
|
|
return [(text_array[top_labels[0][i].numpy()], (top_probs[0][i].numpy()*100)) for i in range(top_count)]
|
|
|
|
def interrogate(image, models):
|
|
caption = generate_caption(image)
|
|
if len(models) == 0:
|
|
print(f"\n\n{caption}")
|
|
return
|
|
|
|
table = []
|
|
bests = [[('',0)]]*5
|
|
for model_name in models:
|
|
print(f"Interrogating with {model_name}...")
|
|
model, preprocess = clip.load(model_name)
|
|
model.cuda().eval()
|
|
|
|
images = preprocess(image).unsqueeze(0).cuda()
|
|
with torch.no_grad():
|
|
image_features = model.encode_image(images).float()
|
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
|
|
|
ranks = [
|
|
rank(model, image_features, mediums),
|
|
rank(model, image_features, ["by "+artist for artist in artists]),
|
|
rank(model, image_features, trending_list),
|
|
rank(model, image_features, movements),
|
|
rank(model, image_features, flavors, top_count=3)
|
|
]
|
|
|
|
for i in range(len(ranks)):
|
|
confidence_sum = 0
|
|
for ci in range(len(ranks[i])):
|
|
confidence_sum += ranks[i][ci][1]
|
|
if confidence_sum > sum(bests[i][t][1] for t in range(len(bests[i]))):
|
|
bests[i] = ranks[i]
|
|
|
|
row = [model_name]
|
|
for r in ranks:
|
|
row.append(', '.join([f"{x[0]} ({x[1]:0.1f}%)" for x in r]))
|
|
|
|
table.append(row)
|
|
|
|
del model
|
|
gc.collect()
|
|
display(pd.DataFrame(table, columns=["Model", "Medium", "Artist", "Trending", "Movement", "Flavors"]))
|
|
|
|
flaves = ', '.join([f"{x[0]}" for x in bests[4]])
|
|
medium = bests[0][0][0]
|
|
if caption.startswith(medium):
|
|
print(f"\n\n{caption} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
|
else:
|
|
print(f"\n\n{caption}, {medium} {bests[1][0][0]}, {bests[2][0][0]}, {bests[3][0][0]}, {flaves}")
|
|
|
|
data_path = "../clip-interrogator/data/"
|
|
|
|
artists = load_list(os.path.join(data_path, 'artists.txt'))
|
|
flavors = load_list(os.path.join(data_path, 'flavors.txt'))
|
|
mediums = load_list(os.path.join(data_path, 'mediums.txt'))
|
|
movements = load_list(os.path.join(data_path, 'movements.txt'))
|
|
|
|
sites = ['Artstation', 'behance', 'cg society', 'cgsociety', 'deviantart', 'dribble', 'flickr', 'instagram', 'pexels', 'pinterest', 'pixabay', 'pixiv', 'polycount', 'reddit', 'shutterstock', 'tumblr', 'unsplash', 'zbrush central']
|
|
trending_list = [site for site in sites]
|
|
trending_list.extend(["trending on "+site for site in sites])
|
|
trending_list.extend(["featured on "+site for site in sites])
|
|
trending_list.extend([site+" contest winner" for site in sites])
|
|
|
|
#@title Interrogate!
|
|
|
|
#@markdown
|
|
|
|
#@markdown #####**Image:**
|
|
|
|
image_path_or_url = "https://i.redd.it/e2e8gimigjq91.jpg" #@param {type:"string"}
|
|
|
|
#@markdown
|
|
|
|
#@markdown #####**CLIP models:**
|
|
|
|
#@markdown For [StableDiffusion](https://stability.ai/blog/stable-diffusion-announcement) you can just use ViTL14<br>
|
|
#@markdown For [DiscoDiffusion](https://colab.research.google.com/github/alembics/disco-diffusion/blob/main/Disco_Diffusion.ipynb) and
|
|
#@markdown [JAX](https://colab.research.google.com/github/huemin-art/jax-guided-diffusion/blob/v2.7/Huemin_Jax_Diffusion_2_7.ipynb) enable all the same models here as you intend to use when generating your images
|
|
|
|
ViTB32 = True #@param{type:"boolean"}
|
|
ViTB16 = True #@param{type:"boolean"}
|
|
ViTL14 = False #@param{type:"boolean"}
|
|
ViTL14_336px = False #@param{type:"boolean"}
|
|
RN101 = False #@param{type:"boolean"}
|
|
RN50 = True #@param{type:"boolean"}
|
|
RN50x4 = False #@param{type:"boolean"}
|
|
RN50x16 = False #@param{type:"boolean"}
|
|
RN50x64 = False #@param{type:"boolean"}
|
|
|
|
models = []
|
|
if ViTB32: models.append('ViT-B/32')
|
|
if ViTB16: models.append('ViT-B/16')
|
|
if ViTL14: models.append('ViT-L/14')
|
|
if ViTL14_336px: models.append('ViT-L/14@336px')
|
|
if RN101: models.append('RN101')
|
|
if RN50: models.append('RN50')
|
|
if RN50x4: models.append('RN50x4')
|
|
if RN50x16: models.append('RN50x16')
|
|
if RN50x64: models.append('RN50x64')
|
|
|
|
if str(image_path_or_url).startswith('http://') or str(image_path_or_url).startswith('https://'):
|
|
image = Image.open(requests.get(image_path_or_url, stream=True).raw).convert('RGB')
|
|
else:
|
|
image = Image.open(image_path_or_url).convert('RGB')
|
|
|
|
thumb = image.copy()
|
|
thumb.thumbnail([blip_image_eval_size, blip_image_eval_size])
|
|
display(thumb)
|
|
|
|
interrogate(image, models=models)
|