swc/crates/swc_bundler/tests/.cache/untrusted/452683f6517db228f8f39d0f824526c3fbc632f2.ts

262 lines
7.7 KiB
TypeScript
Raw Normal View History

// Loaded from https://raw.githubusercontent.com/aricart/tweetnacl-deno/import-type-fixes/src/blake2b.ts
// Blake2B in pure Javascript
// Adapted from the reference implementation in RFC7693
// Ported to Javascript by DC - https://github.com/dcposch
import { ByteArray, WordArray } from './array.ts';
export interface Blake2B {
b: ByteArray;
h: WordArray;
t: number; // input count
c: number; // pointer within buffer
outlen: number; // output length in bytes
}
// Computes the BLAKE2B hash of a string or byte array, and returns a ByteArray
//
// Returns a n-byte ByteArray
//
// Parameters:
// - input - the input bytes, as a ByteArray
// - key - optional key ByteArray, up to 64 bytes
// - outlen - optional output length in bytes, default 64
export function blake2b(input: ByteArray, key?: ByteArray, outlen: number = 64) {
const ctx: Blake2B = blake2b_init(outlen, key);
blake2b_update(ctx, input);
return blake2b_final(ctx)
}
// Creates a BLAKE2b hashing context
// Requires an output length between 1 and 64 bytes
// Takes an optional ByteArray key
export function blake2b_init(outlen: number, key?: ByteArray): Blake2B {
if (outlen === 0 || outlen > 64)
throw new Error('Illegal output length, expected 0 < length <= 64')
if (key && key.length > 64)
throw new Error('Illegal key, expected Uint8Array with 0 < length <= 64')
// hash state
const h = WordArray(16);
// initialize hash state
for (let i = 0; i < 16; i++) h[i] = BLAKE2B_IV32[i];
const keylen = key ? key.length : 0;
h[0] ^= 0x01010000 ^ (keylen << 8) ^ outlen;
// state, 'param block'
const ctx: Blake2B = {
b: ByteArray(128),
h,
t: 0, // input count
c: 0, // pointer within buffer
outlen // output length in bytes
};
// key the hash, if applicable
if (key) {
blake2b_update(ctx, key);
// at the end
ctx.c = 128;
}
return ctx;
}
// Updates a BLAKE2b streaming hash
// Requires hash context and Uint8Array (byte array)
export function blake2b_update(ctx: Blake2B, input: ByteArray) {
for (let i = 0; i < input.length; i++) {
if (ctx.c === 128) { // buffer full ?
ctx.t += ctx.c; // add counters
blake2b_compress(ctx, false); // compress (not last)
ctx.c = 0; // counter to zero
}
ctx.b[ctx.c++] = input[i];
}
}
// Completes a BLAKE2b streaming hash
// Returns a Uint8Array containing the message digest
export function blake2b_final(ctx: Blake2B) {
ctx.t += ctx.c; // mark last block offset
while (ctx.c < 128) { // fill up with zeros
ctx.b[ctx.c++] = 0;
}
blake2b_compress(ctx, true); // final block flag = 1
// little endian convert and store
const out = ByteArray(ctx.outlen);
for (let i = 0; i < ctx.outlen; i++) {
out[i] = ctx.h[i >> 2] >> (8 * (i & 3));
}
return out;
}
// Initialization Vector
const BLAKE2B_IV32 = WordArray([
0xF3BCC908, 0x6A09E667, 0x84CAA73B, 0xBB67AE85,
0xFE94F82B, 0x3C6EF372, 0x5F1D36F1, 0xA54FF53A,
0xADE682D1, 0x510E527F, 0x2B3E6C1F, 0x9B05688C,
0xFB41BD6B, 0x1F83D9AB, 0x137E2179, 0x5BE0CD19
])
const SIGMA8 = [
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3,
11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4,
7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8,
9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13,
2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9,
12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11,
13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10,
6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5,
10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0,
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,
14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3
];
// These are offsets into a uint64 buffer.
// Multiply them all by 2 to make them offsets into a uint32 buffer,
// because this is Javascript and we don't have uint64s
const SIGMA82 = ByteArray(SIGMA8.map(x => x * 2));
// Compression function. 'last' flag indicates last block.
// Note we're representing 16 uint64s as 32 uint32s
const v = WordArray(32);
const m = WordArray(32);
function blake2b_compress(ctx: Blake2B, last: boolean) {
let i;
// init work variables
for (i = 0; i < 16; i++) {
v[i] = ctx.h[i];
v[i + 16] = BLAKE2B_IV32[i];
}
// low 64 bits of offset
v[24] = v[24] ^ ctx.t;
v[25] = v[25] ^ (ctx.t / 0x100000000);
// high 64 bits not supported, offset may not be higher than 2**53-1
// last block flag set ?
if (last) {
v[28] = ~v[28];
v[29] = ~v[29];
}
// get little-endian words
for (i = 0; i < 32; i++) {
m[i] = B2B_GET32(ctx.h, 4 * i);
}
// twelve rounds of mixing
// uncomment the DebugPrint calls to log the computation
// and match the RFC sample documentation
for (i = 0; i < 12; i++) {
B2B_G(0, 8, 16, 24, SIGMA82[i * 16 + 0], SIGMA82[i * 16 + 1]);
B2B_G(2, 10, 18, 26, SIGMA82[i * 16 + 2], SIGMA82[i * 16 + 3]);
B2B_G(4, 12, 20, 28, SIGMA82[i * 16 + 4], SIGMA82[i * 16 + 5]);
B2B_G(6, 14, 22, 30, SIGMA82[i * 16 + 6], SIGMA82[i * 16 + 7]);
B2B_G(0, 10, 20, 30, SIGMA82[i * 16 + 8], SIGMA82[i * 16 + 9]);
B2B_G(2, 12, 22, 24, SIGMA82[i * 16 + 10], SIGMA82[i * 16 + 11]);
B2B_G(4, 14, 16, 26, SIGMA82[i * 16 + 12], SIGMA82[i * 16 + 13]);
B2B_G(6, 8, 18, 28, SIGMA82[i * 16 + 14], SIGMA82[i * 16 + 15]);
}
for (i = 0; i < 16; i++) {
ctx.h[i] = ctx.h[i] ^ v[i] ^ v[i + 16];
}
}
// 64-bit unsigned addition
// Sets v[a,a+1] += v[b,b+1]
// v should be a Uint32Array
function ADD64AA(v: WordArray, a: number, b: number) {
let o0 = v[a] + v[b],
o1 = v[a + 1] + v[b + 1];
if (o0 >= 0x100000000) o1++;
v[a] = o0;
v[a + 1] = o1;
}
// 64-bit unsigned addition
// Sets v[a,a+1] += b
// b0 is the low 32 bits of b, b1 represents the high 32 bits
function ADD64AC(v: WordArray, a: number, b0: number, b1: number) {
let o0 = v[a] + b0;
if (b0 < 0) o0 += 0x100000000;
let o1 = v[a + 1] + b1;
if (o0 >= 0x100000000) o1++;
v[a] = o0;
v[a + 1] = o1;
}
// Little-endian byte access
function B2B_GET32(arr: WordArray, i: number): number {
return arr[i] ^ (arr[i + 1] << 8) ^ (arr[i + 2] << 16) ^ (arr[i + 3] << 24);
}
// G Mixing function
// The ROTRs are inlined for speed
function B2B_G(a: number, b: number, c: number, d: number, ix: number, iy: number) {
const x0 = m[ix];
const x1 = m[ix + 1];
const y0 = m[iy];
const y1 = m[iy + 1];
ADD64AA(v, a, b); // v[a,a+1] += v[b,b+1] ... in JS we must store a uint64 as two uint32s
ADD64AC(v, a, x0, x1); // v[a, a+1] += x ... x0 is the low 32 bits of x, x1 is the high 32 bits
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated to the right by 32 bits
let xor0 = v[d] ^ v[a];
let xor1 = v[d + 1] ^ v[a + 1];
v[d] = xor1;
v[d + 1] = xor0;
ADD64AA(v, c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 24 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor0 >>> 24) ^ (xor1 << 8);
v[b + 1] = (xor1 >>> 24) ^ (xor0 << 8);
ADD64AA(v, a, b);
ADD64AC(v, a, y0, y1);
// v[d,d+1] = (v[d,d+1] xor v[a,a+1]) rotated right by 16 bits
xor0 = v[d] ^ v[a];
xor1 = v[d + 1] ^ v[a + 1];
v[d] = (xor0 >>> 16) ^ (xor1 << 16);
v[d + 1] = (xor1 >>> 16) ^ (xor0 << 16);
ADD64AA(v, c, d);
// v[b,b+1] = (v[b,b+1] xor v[c,c+1]) rotated right by 63 bits
xor0 = v[b] ^ v[c];
xor1 = v[b + 1] ^ v[c + 1];
v[b] = (xor1 >>> 31) ^ (xor0 << 1);
v[b + 1] = (xor0 >>> 31) ^ (xor1 << 1);
}