There were two problems:
* It was using an old code path that didn't even try to resolve the cwd
* The NewWindow code path would "forget" the originating window and then
fail to resolve the current pane + path from the new, empty window
that it is building.
closes: https://github.com/wez/wezterm/issues/322
Adds some supporting methods for computing the `SemanticZone`s
in the display and a key assignment that allows scrolling the
viewport to jump to the next/prev Prompt zone.
Upcoming changes to the GUI mean that it will be double
the work to keep maintaining this, and it is already lagging
behind on pane support.
With the Mesa llvmpipe fallback we should be in a pretty
good state to not need another non-GL implementation.
There's a few different knobs to turn, but this
commit turns them and we're now able to respect
opacity settings for both OpenGL/CGL and Metal
renderers.
closes: #141
This is similar in spirit to the work in 4d71a7913a
but for Windows.
This commit adds ANGLE binaries built from
07ea804e62
to the repo. The build and packaging will copy those into the same
directory as wezterm.exe so that they can be resolved at runtime.
By default, `prefer_egl = true`, which will cause the window
crate to first try to load an EGL implementation. If that fails,
or if `prefer_egl = false`, then the window crate will perform
the usual WGL initialization.
The practical effect of this change is that Direct3D11 is used for the
underlying render, which avoids problematic OpenGL drivers and means
that the process can survive graphics drivers being updated.
It may also increase the chances that the GPU will really be used
in an RDP session rather than the pessimised use of the software
renderer.
The one downside that I've noticed is that the resize behavior feels a
little janky in comparison to WGL (frames can render with mismatched
surface/window sizes which makes the window contents feel like they're
zooming/rippling slightly as the window is live resized). I think this
is specific to the ANGLE D3D implementation as EGL on other platforms
feels more solid.
I'm a little on the fence about making this the default; I think
it makes sense to prefer something that won't quit unexpectedly
while a software update is in progress, so that's a strong plus
in favor of EGL as the default, but I'm not sure how much the
resize wobble is going to set people off.
If you prefer WGL and are fine with the risk of a drive update
killing wezterm, then you can set this in your config:
```lua
return {
prefer_egl = false,
}
```
refs: https://github.com/wez/wezterm/issues/265
closes: https://github.com/wez/wezterm/issues/156
This commit adjusts the window layer to have it try to load EGL
implementations on macOS. This is important as the system
provided OpenGL implementation is deprecated and I wanted to
have a path forward for when it is finally removed.
If EGL fails to initialize, we fall back to the CGL/OpenGL
implementation that we used previously.
I've included binaries built for 64-bit intel from the MetalANGLE
project; here's how I built them:
```
git clone https://chromium.googlesource.com/chromium/tools/depot_tools.git --depth 1
git clone https://github.com/kakashidinho/metalangle --depth 1
cd metalangle
PATH=$PWD/../depot_tools:$PATH python scripts/bootstrap.py
PATH=$PWD/../depot_tools:$PATH gclient sync
PATH=$PWD/../depot_tools:$PATH gn --args="is_debug=false angle_enable_metal=true angle_enable_vulkan=false angle_enable_gl=false angle_build_all=false" gen out/Release
PATH=$PWD/../depot_tools:$PATH autoninja -C out/Release
```
Those steps are a little too long to want to put them directly
into the wezterm CI.
It is important for metalangle to be >= 8230df39a5
in order for scaling to be handled correctly when dragging windows
between monitors.
refs: https://github.com/kakashidinho/metalangle/issues/34
To reproduce the problem, maximize wezterm, then press CMD-N.
This commit tells the window not to use cocoa native tabs and
instead really create a new window when we ask it to create
a new window.
closes: #254
Moved the image and hyperlink portion of CellAttributes out
to a separate heap structure, saving 8 bytes per Cell
for the common case of no hyperlink and no image.
This could be reproduced via `wezterm connect localhost`.
This bug was surfaced after the last release added a Drop impl
to cleanup the display.
This commit tracks the display in the connection.
closes: https://github.com/wez/wezterm/issues/252
This commit adds an overline glyph which is simply a line drawn at
the top of the cell.
Due to the way that we use a single glyph for the line layer, this
actually adds a handful of combination glyphs for the different
underline, overline and strikethrough possibilities.
It's getting a bit hefty. Adding another similar attribute in
the future (eg: maybe wiggly underlines?) might prove to be too
much for the simple approach we have right now.
```bash
printf "\x1b[53moverline\x1b[0m\n"
```