mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-22 18:41:41 +03:00
303 lines
7.9 KiB
Markdown
303 lines
7.9 KiB
Markdown
|
||
# G4F Client API Guide
|
||
|
||
## Table of Contents
|
||
- [Introduction](#introduction)
|
||
- [Getting Started](#getting-started)
|
||
- [Switching to G4F Client](#switching-to-g4f-client)
|
||
- [Initializing the Client](#initializing-the-client)
|
||
- [Creating Chat Completions](#creating-chat-completions)
|
||
- [Configuration](#configuration)
|
||
- [Usage Examples](#usage-examples)
|
||
- [Text Completions](#text-completions)
|
||
- [Streaming Completions](#streaming-completions)
|
||
- [Image Generation](#image-generation)
|
||
- [Creating Image Variations](#creating-image-variations)
|
||
- [Advanced Usage](#advanced-usage)
|
||
- [Using a List of Providers with RetryProvider](#using-a-list-of-providers-with-retryprovider)
|
||
- [Using a Vision Model](#using-a-vision-model)
|
||
- [Command-line Chat Program](#command-line-chat-program)
|
||
|
||
## Introduction
|
||
Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API.
|
||
|
||
## Getting Started
|
||
### Switching to G4F Client
|
||
**To begin using the G4F Client, simply update your import statement in your Python code:**
|
||
|
||
**Old Import:**
|
||
```python
|
||
from openai import OpenAI
|
||
```
|
||
|
||
**New Import:**
|
||
```python
|
||
from g4f.client import Client as OpenAI
|
||
```
|
||
|
||
The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process.
|
||
|
||
## Initializing the Client
|
||
To utilize the G4F Client, create a new instance. **Below is an example showcasing custom providers:**
|
||
```python
|
||
from g4f.client import Client
|
||
from g4f.Provider import BingCreateImages, OpenaiChat, Gemini
|
||
|
||
client = Client(
|
||
provider=OpenaiChat,
|
||
image_provider=Gemini,
|
||
# Add any other necessary parameters
|
||
)
|
||
```
|
||
|
||
## Creating Chat Completions
|
||
**Here’s an improved example of creating chat completions:**
|
||
```python
|
||
response = client.chat.completions.create(
|
||
model="gpt-4o-mini",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "Say this is a test"
|
||
}
|
||
]
|
||
# Add any other necessary parameters
|
||
)
|
||
```
|
||
|
||
**This example:**
|
||
- Asks a specific question `Say this is a test`
|
||
- Configures various parameters like temperature and max_tokens for more control over the output
|
||
- Disables streaming for a complete response
|
||
|
||
You can adjust these parameters based on your specific needs.
|
||
|
||
## Configuration
|
||
**You can set an `api_key` for your provider in the client and define a proxy for all outgoing requests:**
|
||
```python
|
||
from g4f.client import Client
|
||
|
||
client = Client(
|
||
api_key="your_api_key_here",
|
||
proxies="http://user:pass@host",
|
||
# Add any other necessary parameters
|
||
)
|
||
```
|
||
|
||
## Usage Examples
|
||
### Text Completions
|
||
**Generate text completions using the `ChatCompletions` endpoint:**
|
||
```python
|
||
from g4f.client import Client
|
||
|
||
client = Client()
|
||
|
||
response = client.chat.completions.create(
|
||
model="gpt-4o-mini",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "Say this is a test"
|
||
}
|
||
]
|
||
# Add any other necessary parameters
|
||
)
|
||
|
||
print(response.choices[0].message.content)
|
||
```
|
||
|
||
### Streaming Completions
|
||
**Process responses incrementally as they are generated:**
|
||
```python
|
||
from g4f.client import Client
|
||
|
||
client = Client()
|
||
|
||
stream = client.chat.completions.create(
|
||
model="gpt-4",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "Say this is a test"
|
||
}
|
||
],
|
||
stream=True,
|
||
)
|
||
|
||
for chunk in stream:
|
||
if chunk.choices[0].delta.content:
|
||
print(chunk.choices[0].delta.content or "", end="")
|
||
```
|
||
|
||
### Image Generation
|
||
**The `response_format` parameter is optional and can have the following values:**
|
||
- **If not specified (default):** The image will be saved locally, and a local path will be returned (e.g., "/images/1733331238_cf9d6aa9-f606-4fea-ba4b-f06576cba309.jpg").
|
||
- **"url":** Returns a URL to the generated image.
|
||
- **"b64_json":** Returns the image as a base64-encoded JSON string.
|
||
|
||
**Generate images using a specified prompt:**
|
||
```python
|
||
from g4f.client import Client
|
||
|
||
client = Client()
|
||
|
||
response = client.images.generate(
|
||
model="flux",
|
||
prompt="a white siamese cat",
|
||
response_format="url"
|
||
# Add any other necessary parameters
|
||
)
|
||
|
||
image_url = response.data[0].url
|
||
|
||
print(f"Generated image URL: {image_url}")
|
||
```
|
||
|
||
#### Base64 Response Format
|
||
```python
|
||
from g4f.client import Client
|
||
|
||
client = Client()
|
||
|
||
response = client.images.generate(
|
||
model="flux",
|
||
prompt="a white siamese cat",
|
||
response_format="b64_json"
|
||
# Add any other necessary parameters
|
||
)
|
||
|
||
base64_text = response.data[0].b64_json
|
||
print(base64_text)
|
||
```
|
||
|
||
### Creating Image Variations
|
||
**Create variations of an existing image:**
|
||
```python
|
||
from g4f.client import Client
|
||
from g4f.Provider import OpenaiChat
|
||
|
||
client = Client(
|
||
image_provider=OpenaiChat
|
||
)
|
||
|
||
response = client.images.create_variation(
|
||
image=open("docs/images/cat.jpg", "rb"),
|
||
model="dall-e-3",
|
||
# Add any other necessary parameters
|
||
)
|
||
|
||
image_url = response.data[0].url
|
||
|
||
print(f"Generated image URL: {image_url}")
|
||
```
|
||
|
||
## Advanced Usage
|
||
|
||
### Using a List of Providers with RetryProvider
|
||
```python
|
||
from g4f.client import Client
|
||
from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots
|
||
import g4f.debug
|
||
|
||
g4f.debug.logging = True
|
||
g4f.debug.version_check = False
|
||
|
||
client = Client(
|
||
provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False)
|
||
)
|
||
|
||
response = client.chat.completions.create(
|
||
model="",
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "Hello"
|
||
}
|
||
]
|
||
)
|
||
|
||
print(response.choices[0].message.content)
|
||
```
|
||
|
||
### Using a Vision Model
|
||
**Analyze an image and generate a description:**
|
||
```python
|
||
import g4f
|
||
import requests
|
||
|
||
from g4f.client import Client
|
||
from g4f.Provider.GeminiPro import GeminiPro
|
||
|
||
# Initialize the GPT client with the desired provider and api key
|
||
client = Client(
|
||
api_key="your_api_key_here",
|
||
provider=GeminiPro
|
||
)
|
||
|
||
image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw
|
||
# Or: image = open("docs/images/cat.jpeg", "rb")
|
||
|
||
response = client.chat.completions.create(
|
||
model=g4f.models.default,
|
||
messages=[
|
||
{
|
||
"role": "user",
|
||
"content": "What are on this image?"
|
||
}
|
||
],
|
||
image=image
|
||
# Add any other necessary parameters
|
||
)
|
||
|
||
print(response.choices[0].message.content)
|
||
```
|
||
|
||
|
||
## Command-line Chat Program
|
||
**Here's an example of a simple command-line chat program using the G4F Client:**
|
||
```python
|
||
import g4f
|
||
from g4f.client import Client
|
||
|
||
# Initialize the GPT client with the desired provider
|
||
client = Client()
|
||
|
||
# Initialize an empty conversation history
|
||
messages = []
|
||
|
||
while True:
|
||
# Get user input
|
||
user_input = input("You: ")
|
||
|
||
# Check if the user wants to exit the chat
|
||
if user_input.lower() == "exit":
|
||
print("Exiting chat...")
|
||
break # Exit the loop to end the conversation
|
||
|
||
# Update the conversation history with the user's message
|
||
messages.append({"role": "user", "content": user_input})
|
||
|
||
try:
|
||
# Get GPT's response
|
||
response = client.chat.completions.create(
|
||
messages=messages,
|
||
model=g4f.models.default,
|
||
)
|
||
|
||
# Extract the GPT response and print it
|
||
gpt_response = response.choices[0].message.content
|
||
print(f"Bot: {gpt_response}")
|
||
|
||
# Update the conversation history with GPT's response
|
||
messages.append({"role": "assistant", "content": gpt_response})
|
||
|
||
except Exception as e:
|
||
print(f"An error occurred: {e}")
|
||
```
|
||
|
||
This guide provides a comprehensive overview of the G4F Client API, demonstrating its versatility in handling various AI tasks, from text generation to image analysis and creation. By leveraging these features, you can build powerful and responsive applications that harness the capabilities of advanced AI models.
|
||
|
||
|
||
---
|
||
[Return to Home](/)
|