gpt4free/docs/legacy.md
H Lohaus 3f93d34cbf
Add more contributers, add link to Swagger UI (#2443)
* Add more contributers, add link to Swagger UI
* Update Dockerfile-slim
* Update retry_provider.py
* Add html preview to gui, fix urls in website manifest
* Missing chunks in OpenaiChat
2024-11-30 22:11:18 +01:00

5.2 KiB

G4F - Legacy API

ChatCompletion

import g4f

g4f.debug.logging = True  # Enable debug logging
g4f.debug.version_check = False  # Disable automatic version checking
print(g4f.Provider.Gemini.params)  # Print supported args for Gemini

# Using automatic a provider for the given model
## Streamed completion
response = g4f.ChatCompletion.create(
    model="gpt-3.5-turbo",
    messages=[{"role": "user", "content": "Hello"}],
    stream=True,
)
for message in response:
    print(message, flush=True, end='')

## Normal response
response = g4f.ChatCompletion.create(
    model=g4f.models.gpt_4,
    messages=[{"role": "user", "content": "Hello"}],
)  # Alternative model setting

print(response)
Completion
import g4f

allowed_models = [
    'code-davinci-002',
    'text-ada-001',
    'text-babbage-001',
    'text-curie-001',
    'text-davinci-002',
    'text-davinci-003'
]

response = g4f.Completion.create(
    model='text-davinci-003',
    prompt='say this is a test'
)

print(response)
Providers
import g4f

# Print all available providers
print([
    provider.__name__
    for provider in g4f.Provider.__providers__
    if provider.working
])

# Execute with a specific provider
response = g4f.ChatCompletion.create(
    model="gpt-3.5-turbo",
    provider=g4f.Provider.Aichat,
    messages=[{"role": "user", "content": "Hello"}],
    stream=True,
)
for message in response:
    print(message)
Image Upload & Generation

Image upload and generation are supported by three main providers:

  • Microsoft Copilot & Other GPT-4 Providers: Utilizes Microsoft's Image Creator.
  • Google Gemini: Available for free accounts with IP addresses outside Europe.
  • OpenaiChat with GPT-4: Accessible for users with a Plus subscription.
import g4f

# Setting up the request for image creation
response = g4f.ChatCompletion.create(
    model=g4f.models.default, # Using the default model
    provider=g4f.Provider.Gemini, # Specifying the provider as Gemini
    messages=[{"role": "user", "content": "Create an image like this"}],
    image=open("images/g4f.png", "rb"), # Image input can be a data URI, bytes, PIL Image, or IO object
    image_name="g4f.png" # Optional: specifying the filename
)

# Displaying the response
print(response)

from g4f.image import ImageResponse

# Get image links from response
for chunk in g4f.ChatCompletion.create(
    model=g4f.models.default, # Using the default model
    provider=g4f.Provider.OpenaiChat, # Specifying the provider as OpenaiChat
    messages=[{"role": "user", "content": "Create images with dogs"}],
    access_token="...", # Need a access token from a plus user
    stream=True,
    ignore_stream=True
):
    if isinstance(chunk, ImageResponse):
        print(chunk.images) # Print generated image links
        print(chunk.alt) # Print used prompt for image generation
Using Browser

Some providers using a browser to bypass the bot protection. They using the selenium webdriver to control the browser. The browser settings and the login data are saved in a custom directory. If the headless mode is enabled, the browser windows are loaded invisibly. For performance reasons, it is recommended to reuse the browser instances and close them yourself at the end:

import g4f
from undetected_chromedriver import Chrome, ChromeOptions
from g4f.Provider import (
    Bard,
    Poe,
    AItianhuSpace,
    MyShell,
    PerplexityAi,
)

options = ChromeOptions()
options.add_argument("--incognito");
webdriver = Chrome(options=options, headless=True)
for idx in range(10):
    response = g4f.ChatCompletion.create(
        model=g4f.models.default,
        provider=g4f.Provider.MyShell,
        messages=[{"role": "user", "content": "Suggest me a name."}],
        webdriver=webdriver
    )
    print(f"{idx}:", response)
webdriver.quit()
Async Support

To enhance speed and overall performance, execute providers asynchronously. The total execution time will be determined by the duration of the slowest provider's execution.

import g4f
import asyncio

_providers = [
    g4f.Provider.Aichat,
    g4f.Provider.ChatBase,
    g4f.Provider.Bing,
    g4f.Provider.GptGo,
    g4f.Provider.You,
    g4f.Provider.Yqcloud,
]

async def run_provider(provider: g4f.Provider.BaseProvider):
    try:
        response = await g4f.ChatCompletion.create_async(
            model=g4f.models.default,
            messages=[{"role": "user", "content": "Hello"}],
            provider=provider,
        )
        print(f"{provider.__name__}:", response)
    except Exception as e:
        print(f"{provider.__name__}:", e)
        
async def run_all():
    calls = [
        run_provider(provider) for provider in _providers
    ]
    await asyncio.gather(*calls)

asyncio.run(run_all())
Proxy and Timeout Support

All providers support specifying a proxy and increasing timeout in the create functions.

import g4f

response = g4f.ChatCompletion.create(
    model=g4f.models.default,
    messages=[{"role": "user", "content": "Hello"}],
    proxy="http://host:port",
    # or socks5://user:pass@host:port
    timeout=120,  # in secs
)

print(f"Result:", response)

Return to Home