mirror of
https://github.com/xtekky/gpt4free.git
synced 2024-12-23 11:02:40 +03:00
381 lines
11 KiB
Markdown
381 lines
11 KiB
Markdown
# G4F - Legacy AsyncClient API Guide
|
|
|
|
**IMPORTANT: This guide refers to the old implementation of AsyncClient. The new version of G4F now supports both synchronous and asynchronous operations through a unified interface. Please refer to the [new AsyncClient documentation](https://github.com/xtekky/gpt4free/blob/main/docs/async_client.md) for the latest information.**
|
|
|
|
This guide provides comprehensive information on how to use the G4F AsyncClient API, including setup, usage examples, best practices, and important considerations for optimal performance.
|
|
|
|
## Compatibility Note
|
|
The G4F AsyncClient API is designed to be compatible with the OpenAI API, making it easy for developers familiar with OpenAI's interface to transition to G4F. However, please note that this is the old version, and you should migrate to the new implementation for better support and features.
|
|
|
|
## Table of Contents
|
|
- [Introduction](#introduction)
|
|
- [Key Features](#key-features)
|
|
- [Getting Started](#getting-started)
|
|
- [Initializing the Client](#initializing-the-client)
|
|
- [Creating Chat Completions](#creating-chat-completions)
|
|
- [Configuration](#configuration)
|
|
- [Usage Examples](#usage-examples)
|
|
- [Text Completions](#text-completions)
|
|
- [Streaming Completions](#streaming-completions)
|
|
- [Using a Vision Model](#using-a-vision-model)
|
|
- [Image Generation](#image-generation)
|
|
- [Concurrent Tasks](#concurrent-tasks-with-asynciogather)
|
|
- [Available Models and Providers](#available-models-and-providers)
|
|
- [Error Handling and Best Practices](#error-handling-and-best-practices)
|
|
- [Rate Limiting and API Usage](#rate-limiting-and-api-usage)
|
|
- [Conclusion](#conclusion)
|
|
|
|
## Introduction
|
|
This is the old version: The G4F AsyncClient API is an asynchronous version of the standard G4F Client API. It offers the same functionality as the synchronous API but with improved performance due to its asynchronous nature. This guide will walk you through the key features and usage of the G4F AsyncClient API.
|
|
|
|
## Key Features
|
|
- **Custom Providers**: Use custom providers for enhanced flexibility.
|
|
- **ChatCompletion Interface**: Interact with chat models through the ChatCompletion class.
|
|
- **Streaming Responses**: Get responses iteratively as they are received.
|
|
- **Non-Streaming Responses**: Generate complete responses in a single call.
|
|
- **Image Generation and Vision Models**: Support for image-related tasks.
|
|
|
|
## Getting Started
|
|
**To ignore DeprecationWarnings related to the AsyncClient, you can use the following code:***
|
|
```python
|
|
import warnings
|
|
|
|
# Ignore DeprecationWarning for AsyncClient
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning, module="g4f.client")
|
|
```
|
|
|
|
### Initializing the Client
|
|
**To use the G4F `Client`, create a new instance:**
|
|
```python
|
|
from g4f.client import AsyncClient
|
|
from g4f.Provider import OpenaiChat, Gemini
|
|
|
|
client = AsyncClient(
|
|
provider=OpenaiChat,
|
|
image_provider=Gemini,
|
|
# Add other parameters as needed
|
|
)
|
|
```
|
|
|
|
## Creating Chat Completions
|
|
**Here's an improved example of creating chat completions:**
|
|
```python
|
|
response = await async_client.chat.completions.create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Say this is a test"
|
|
}
|
|
]
|
|
# Add other parameters as needed
|
|
)
|
|
```
|
|
|
|
**This example:**
|
|
- Asks a specific question `Say this is a test`
|
|
- Configures various parameters like temperature and max_tokens for more control over the output
|
|
- Disables streaming for a complete response
|
|
|
|
You can adjust these parameters based on your specific needs.
|
|
|
|
### Configuration
|
|
**Configure the `AsyncClient` with additional settings:**
|
|
```python
|
|
client = Client(
|
|
api_key="your_api_key_here",
|
|
proxies="http://user:pass@host",
|
|
# Add other parameters as needed
|
|
)
|
|
```
|
|
|
|
## Usage Examples
|
|
### Text Completions
|
|
**Generate text completions using the ChatCompletions endpoint:**
|
|
```python
|
|
import asyncio
|
|
import warnings
|
|
from g4f.client import AsyncClient
|
|
|
|
# Ігноруємо DeprecationWarning
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
response = await client.chat.completions.async_create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Say this is a test"
|
|
}
|
|
]
|
|
)
|
|
|
|
print(response.choices[0].message.content)
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
### Streaming Completions
|
|
**Process responses incrementally as they are generated:**
|
|
```python
|
|
import asyncio
|
|
from g4f.client import AsyncClient
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
stream = await client.chat.completions.async_create(
|
|
model="gpt-4",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Say this is a test"
|
|
}
|
|
],
|
|
stream=True,
|
|
)
|
|
|
|
async for chunk in stream:
|
|
if chunk.choices[0].delta.content:
|
|
print(chunk.choices[0].delta.content, end="")
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
### Using a Vision Model
|
|
**Analyze an image and generate a description:**
|
|
```python
|
|
import g4f
|
|
import requests
|
|
import asyncio
|
|
from g4f.client import AsyncClient
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw
|
|
|
|
response = await client.chat.completions.async_create(
|
|
model=g4f.models.default,
|
|
provider=g4f.Provider.Bing,
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "What's in this image?"
|
|
}
|
|
],
|
|
image=image
|
|
)
|
|
|
|
print(response.choices[0].message.content)
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
### Image Generation
|
|
**Generate images using a specified prompt:**
|
|
```python
|
|
import asyncio
|
|
from g4f.client import AsyncClient
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
response = await client.images.async_generate(
|
|
prompt="a white siamese cat",
|
|
model="flux"
|
|
)
|
|
|
|
image_url = response.data[0].url
|
|
print(f"Generated image URL: {image_url}")
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
#### Base64 Response Format
|
|
```python
|
|
import asyncio
|
|
from g4f.client import AsyncClient
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
response = await client.images.async_generate(
|
|
prompt="a white siamese cat",
|
|
model="flux",
|
|
response_format="b64_json"
|
|
)
|
|
|
|
base64_text = response.data[0].b64_json
|
|
print(base64_text)
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
### Concurrent Tasks with asyncio.gather
|
|
**Execute multiple tasks concurrently:**
|
|
```python
|
|
import asyncio
|
|
import warnings
|
|
from g4f.client import AsyncClient
|
|
|
|
# Ignore DeprecationWarning for AsyncClient
|
|
warnings.filterwarnings("ignore", category=DeprecationWarning, module="g4f.client")
|
|
|
|
async def main():
|
|
client = AsyncClient()
|
|
|
|
task1 = client.chat.completions.async_create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Say this is a test"
|
|
}
|
|
]
|
|
)
|
|
|
|
task2 = client.images.async_generate(
|
|
model="flux",
|
|
prompt="a white siamese cat"
|
|
)
|
|
|
|
chat_response, image_response = await asyncio.gather(task1, task2)
|
|
|
|
print("Chat Response:")
|
|
print(chat_response.choices[0].message.content)
|
|
|
|
print("Image Response:")
|
|
print(image_response.data[0].url)
|
|
|
|
asyncio.run(main())
|
|
```
|
|
|
|
## Available Models and Providers
|
|
This is the old version: The G4F AsyncClient supports a wide range of AI models and providers, allowing you to choose the best option for your specific use case.
|
|
**Here's a brief overview of the available models and providers:**
|
|
|
|
### Models
|
|
- GPT-3.5-Turbo
|
|
- GPT-4
|
|
- DALL-E 3
|
|
- Gemini
|
|
- Claude (Anthropic)
|
|
- And more...
|
|
|
|
### Providers
|
|
- OpenAI
|
|
- Google (for Gemini)
|
|
- Anthropic
|
|
- Bing
|
|
- Custom providers
|
|
|
|
**To use a specific model or provider, specify it when creating the client or in the API call:**
|
|
```python
|
|
client = AsyncClient(provider=g4f.Provider.OpenaiChat)
|
|
|
|
# or
|
|
|
|
response = await client.chat.completions.async_create(
|
|
model="gpt-4",
|
|
provider=g4f.Provider.Bing,
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, world!"
|
|
}
|
|
]
|
|
)
|
|
```
|
|
|
|
## Error Handling and Best Practices
|
|
Implementing proper error handling and following best practices is crucial when working with the G4F AsyncClient API. This ensures your application remains robust and can gracefully handle various scenarios. **Here are some key practices to follow:**
|
|
|
|
1. **Use try-except blocks to catch and handle exceptions:**
|
|
```python
|
|
try:
|
|
response = await client.chat.completions.async_create(
|
|
model="gpt-3.5-turbo",
|
|
messages=[
|
|
{
|
|
"role": "user",
|
|
"content": "Hello, world!"
|
|
}
|
|
]
|
|
)
|
|
except Exception as e:
|
|
print(f"An error occurred: {e}")
|
|
```
|
|
|
|
2. **Check the response status and handle different scenarios:**
|
|
```python
|
|
if response.choices:
|
|
print(response.choices[0].message.content)
|
|
else:
|
|
print("No response generated")
|
|
```
|
|
|
|
3. **Implement retries for transient errors:**
|
|
```python
|
|
import asyncio
|
|
from tenacity import retry, stop_after_attempt, wait_exponential
|
|
|
|
@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
|
|
async def make_api_call():
|
|
# Your API call here
|
|
pass
|
|
```
|
|
|
|
## Rate Limiting and API Usage
|
|
This is the old version: When working with the G4F AsyncClient API, it's important to implement rate limiting and monitor your API usage. This helps ensure fair usage, prevents overloading the service, and optimizes your application's performance. **Here are some key strategies to consider:**
|
|
|
|
1. **Implement rate limiting in your application:**
|
|
```python
|
|
import asyncio
|
|
from aiolimiter import AsyncLimiter
|
|
|
|
rate_limit = AsyncLimiter(max_rate=10, time_period=1) # 10 requests per second
|
|
|
|
async def make_api_call():
|
|
async with rate_limit:
|
|
# Your API call here
|
|
pass
|
|
```
|
|
|
|
2. **Monitor your API usage and implement logging:**
|
|
```python
|
|
import logging
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
async def make_api_call():
|
|
try:
|
|
response = await client.chat.completions.async_create(...)
|
|
logger.info(f"API call successful. Tokens used: {response.usage.total_tokens}")
|
|
except Exception as e:
|
|
logger.error(f"API call failed: {e}")
|
|
```
|
|
|
|
3. **Use caching to reduce API calls for repeated queries:**
|
|
```python
|
|
from functools import lru_cache
|
|
|
|
@lru_cache(maxsize=100)
|
|
def get_cached_response(query):
|
|
# Your API call here
|
|
pass
|
|
```
|
|
|
|
## Conclusion
|
|
This is the old version: The G4F AsyncClient API provides a powerful and flexible way to interact with various AI models asynchronously. By leveraging its features and following best practices, you can build efficient and responsive applications that harness the power of AI for text generation, image analysis, and image creation.
|
|
|
|
Remember to handle errors gracefully, implement rate limiting, and monitor your API usage to ensure optimal performance and reliability in your applications.
|
|
|
|
---
|
|
|
|
[Return to Home](/)
|