2020-11-25 12:49:53 +03:00
|
|
|
(* This file is part of the Catala compiler, a specification language for tax
|
|
|
|
and social benefits computation rules. Copyright (C) 2020 Inria, contributor:
|
|
|
|
Denis Merigoux <denis.merigoux@inria.fr>
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License"); you may not
|
|
|
|
use this file except in compliance with the License. You may obtain a copy of
|
|
|
|
the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
|
|
|
|
WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
|
|
|
|
License for the specific language governing permissions and limitations under
|
|
|
|
the License. *)
|
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** Translation from {!module: Desugared.Ast} to {!module: Scopelang.Ast} *)
|
|
|
|
|
2022-11-21 12:46:17 +03:00
|
|
|
open Catala_utils
|
2022-08-12 23:42:39 +03:00
|
|
|
open Shared_ast
|
2023-02-27 11:50:42 +03:00
|
|
|
module D = Desugared.Ast
|
2020-11-25 16:35:26 +03:00
|
|
|
|
2022-03-01 12:15:44 +03:00
|
|
|
(** {1 Expression translation}*)
|
|
|
|
|
|
|
|
type target_scope_vars =
|
2022-08-17 18:14:29 +03:00
|
|
|
| WholeVar of ScopeVar.t
|
2022-08-25 13:09:51 +03:00
|
|
|
| States of (StateName.t * ScopeVar.t) list
|
2022-03-01 12:15:44 +03:00
|
|
|
|
|
|
|
type ctx = {
|
2022-11-28 18:23:27 +03:00
|
|
|
decl_ctx : decl_ctx;
|
2022-11-21 12:12:45 +03:00
|
|
|
scope_var_mapping : target_scope_vars ScopeVar.Map.t;
|
2022-11-07 15:50:28 +03:00
|
|
|
var_mapping : (Desugared.Ast.expr, untyped Ast.expr Var.t) Var.Map.t;
|
2022-03-01 12:15:44 +03:00
|
|
|
}
|
|
|
|
|
2022-03-16 13:44:34 +03:00
|
|
|
let tag_with_log_entry
|
2022-11-07 15:50:28 +03:00
|
|
|
(e : untyped Ast.expr boxed)
|
2022-08-12 23:42:39 +03:00
|
|
|
(l : log_entry)
|
2022-11-21 12:46:17 +03:00
|
|
|
(markings : Uid.MarkedString.info list) : untyped Ast.expr boxed =
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.eapp
|
Add overloaded operators for the common operations
This uses the same disambiguation mechanism put in place for
structures, calling the typer on individual rules on the desugared AST
to propagate types, in order to resolve ambiguous operators like `+`
to their strongly typed counterparts (`+!`, `+.`, `+$`, `+@`, `+$`) in
the translation to scopelang.
The patch includes some normalisation of the definition of all the
operators, and classifies them based on their typing policy instead of
their arity. It also adds a little more flexibility:
- a couple new operators, like `-` on date and duration
- optional type annotation on some aggregation constructions
The `Shared_ast` lib is also lightly restructured, with the `Expr`
module split into `Type`, `Operator` and `Expr`.
2022-11-29 11:47:53 +03:00
|
|
|
(Expr.eop (Log (l, markings)) [TAny, Expr.pos e] (Marked.get_mark e))
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
[e] (Marked.get_mark e)
|
2022-03-16 13:44:34 +03:00
|
|
|
|
2022-11-07 15:50:28 +03:00
|
|
|
let rec translate_expr (ctx : ctx) (e : Desugared.Ast.expr) :
|
|
|
|
untyped Ast.expr boxed =
|
2022-07-11 12:32:23 +03:00
|
|
|
let m = Marked.get_mark e in
|
2022-05-30 12:20:48 +03:00
|
|
|
match Marked.unmark e with
|
2022-08-25 17:08:08 +03:00
|
|
|
| ELocation (SubScopeVar (s_name, ss_name, s_var)) ->
|
2022-03-01 22:41:01 +03:00
|
|
|
(* When referring to a subscope variable in an expression, we are referring
|
|
|
|
to the output, hence we take the last state. *)
|
|
|
|
let new_s_var =
|
2022-11-21 12:12:45 +03:00
|
|
|
match ScopeVar.Map.find (Marked.unmark s_var) ctx.scope_var_mapping with
|
2022-05-30 12:20:48 +03:00
|
|
|
| WholeVar new_s_var -> Marked.same_mark_as new_s_var s_var
|
|
|
|
| States states ->
|
|
|
|
Marked.same_mark_as (snd (List.hd (List.rev states))) s_var
|
2022-03-01 22:41:01 +03:00
|
|
|
in
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.elocation (SubScopeVar (s_name, ss_name, new_s_var)) m
|
2022-08-25 17:08:08 +03:00
|
|
|
| ELocation (DesugaredScopeVar (s_var, None)) ->
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.elocation
|
|
|
|
(ScopelangScopeVar
|
|
|
|
(match
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.find (Marked.unmark s_var) ctx.scope_var_mapping
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
with
|
|
|
|
| WholeVar new_s_var -> Marked.same_mark_as new_s_var s_var
|
|
|
|
| States _ -> failwith "should not happen"))
|
|
|
|
m
|
2022-08-25 17:08:08 +03:00
|
|
|
| ELocation (DesugaredScopeVar (s_var, Some state)) ->
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.elocation
|
|
|
|
(ScopelangScopeVar
|
|
|
|
(match
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.find (Marked.unmark s_var) ctx.scope_var_mapping
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
with
|
|
|
|
| WholeVar _ -> failwith "should not happen"
|
|
|
|
| States states -> Marked.same_mark_as (List.assoc state states) s_var))
|
|
|
|
m
|
2023-02-13 17:00:23 +03:00
|
|
|
| ELocation (ToplevelVar v) -> Expr.elocation (ToplevelVar v) m
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
| EVar v -> Expr.evar (Var.Map.find v ctx.var_mapping) m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EStruct { name; fields } ->
|
2022-11-21 12:12:45 +03:00
|
|
|
Expr.estruct name (StructField.Map.map (translate_expr ctx) fields) m
|
2022-11-28 18:23:27 +03:00
|
|
|
| EDStructAccess { name_opt = None; _ } ->
|
|
|
|
(* Note: this could only happen if disambiguation was disabled. If we want
|
|
|
|
to support it, we should still allow this case when the field has only
|
|
|
|
one possible matching structure *)
|
|
|
|
Errors.raise_spanned_error (Expr.mark_pos m)
|
|
|
|
"Ambiguous structure field access"
|
|
|
|
| EDStructAccess { e; field; name_opt = Some name } ->
|
|
|
|
let e' = translate_expr ctx e in
|
|
|
|
let field =
|
|
|
|
try
|
|
|
|
StructName.Map.find name
|
|
|
|
(IdentName.Map.find field ctx.decl_ctx.ctx_struct_fields)
|
|
|
|
with Not_found ->
|
|
|
|
(* Should not happen after disambiguation *)
|
|
|
|
Errors.raise_spanned_error (Expr.mark_pos m)
|
|
|
|
"Field %s does not belong to structure %a" field StructName.format_t
|
|
|
|
name
|
|
|
|
in
|
|
|
|
Expr.estructaccess e' field name m
|
2023-01-10 13:50:37 +03:00
|
|
|
| ETuple es -> Expr.etuple (List.map (translate_expr ctx) es) m
|
|
|
|
| ETupleAccess { e; index; size } ->
|
|
|
|
Expr.etupleaccess (translate_expr ctx e) index size m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EInj { e; cons; name } -> Expr.einj (translate_expr ctx e) cons name m
|
|
|
|
| EMatch { e; name; cases } ->
|
|
|
|
Expr.ematch (translate_expr ctx e) name
|
2022-11-21 12:12:45 +03:00
|
|
|
(EnumConstructor.Map.map (translate_expr ctx) cases)
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EScopeCall { scope; args } ->
|
|
|
|
Expr.escopecall scope
|
2022-11-21 12:12:45 +03:00
|
|
|
(ScopeVar.Map.fold
|
2022-11-17 19:13:35 +03:00
|
|
|
(fun v e args' ->
|
2022-10-21 16:47:17 +03:00
|
|
|
let v' =
|
2022-11-21 12:12:45 +03:00
|
|
|
match ScopeVar.Map.find v ctx.scope_var_mapping with
|
2022-10-21 16:47:17 +03:00
|
|
|
| WholeVar v' -> v'
|
2022-11-03 17:18:51 +03:00
|
|
|
| States ((_, v') :: _) ->
|
|
|
|
(* When there are multiple states, the input is always the first
|
|
|
|
one *)
|
|
|
|
v'
|
2022-10-26 12:08:50 +03:00
|
|
|
| States [] -> assert false
|
2022-10-21 16:47:17 +03:00
|
|
|
in
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.add v' (translate_expr ctx e) args')
|
|
|
|
args ScopeVar.Map.empty)
|
2022-10-21 16:47:17 +03:00
|
|
|
m
|
2022-08-25 13:09:51 +03:00
|
|
|
| ELit
|
|
|
|
(( LBool _ | LEmptyError | LInt _ | LRat _ | LMoney _ | LUnit | LDate _
|
|
|
|
| LDuration _ ) as l) ->
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.elit l m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EAbs { binder; tys } ->
|
2022-03-01 22:41:01 +03:00
|
|
|
let vars, body = Bindlib.unmbind binder in
|
2022-08-25 13:09:51 +03:00
|
|
|
let new_vars = Array.map (fun var -> Var.make (Bindlib.name_of var)) vars in
|
2022-03-01 22:41:01 +03:00
|
|
|
let ctx =
|
|
|
|
List.fold_left2
|
|
|
|
(fun ctx var new_var ->
|
2022-08-25 17:08:08 +03:00
|
|
|
{ ctx with var_mapping = Var.Map.add var new_var ctx.var_mapping })
|
2022-03-01 22:41:01 +03:00
|
|
|
ctx (Array.to_list vars) (Array.to_list new_vars)
|
|
|
|
in
|
2022-11-17 19:13:35 +03:00
|
|
|
Expr.eabs (Expr.bind new_vars (translate_expr ctx body)) tys m
|
Add overloaded operators for the common operations
This uses the same disambiguation mechanism put in place for
structures, calling the typer on individual rules on the desugared AST
to propagate types, in order to resolve ambiguous operators like `+`
to their strongly typed counterparts (`+!`, `+.`, `+$`, `+@`, `+$`) in
the translation to scopelang.
The patch includes some normalisation of the definition of all the
operators, and classifies them based on their typing policy instead of
their arity. It also adds a little more flexibility:
- a couple new operators, like `-` on date and duration
- optional type annotation on some aggregation constructions
The `Shared_ast` lib is also lightly restructured, with the `Expr`
module split into `Type`, `Operator` and `Expr`.
2022-11-29 11:47:53 +03:00
|
|
|
| EApp { f = EOp { op; tys }, m1; args } ->
|
|
|
|
let args = List.map (translate_expr ctx) args in
|
|
|
|
Operator.kind_dispatch op
|
|
|
|
~monomorphic:(fun op -> Expr.eapp (Expr.eop op tys m1) args m)
|
|
|
|
~polymorphic:(fun op -> Expr.eapp (Expr.eop op tys m1) args m)
|
|
|
|
~overloaded:(fun op ->
|
|
|
|
match
|
|
|
|
Operator.resolve_overload ctx.decl_ctx
|
|
|
|
(Marked.mark (Expr.pos e) op)
|
|
|
|
tys
|
|
|
|
with
|
|
|
|
| op, `Straight -> Expr.eapp (Expr.eop op tys m1) args m
|
|
|
|
| op, `Reversed ->
|
|
|
|
Expr.eapp (Expr.eop op (List.rev tys) m1) (List.rev args) m)
|
|
|
|
| EOp _ -> assert false (* Only allowed within [EApp] *)
|
2022-11-17 19:13:35 +03:00
|
|
|
| EApp { f; args } ->
|
|
|
|
Expr.eapp (translate_expr ctx f) (List.map (translate_expr ctx) args) m
|
|
|
|
| EDefault { excepts; just; cons } ->
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.edefault
|
|
|
|
(List.map (translate_expr ctx) excepts)
|
|
|
|
(translate_expr ctx just) (translate_expr ctx cons) m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EIfThenElse { cond; etrue; efalse } ->
|
|
|
|
Expr.eifthenelse (translate_expr ctx cond) (translate_expr ctx etrue)
|
|
|
|
(translate_expr ctx efalse)
|
|
|
|
m
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
| EArray args -> Expr.earray (List.map (translate_expr ctx) args) m
|
2022-11-17 19:13:35 +03:00
|
|
|
| EErrorOnEmpty e1 -> Expr.eerroronempty (translate_expr ctx e1) m
|
2022-03-01 12:15:44 +03:00
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** {1 Rule tree construction} *)
|
|
|
|
|
2022-01-05 12:42:46 +03:00
|
|
|
(** Intermediate representation for the exception tree of rules for a particular
|
|
|
|
scope definition. *)
|
|
|
|
type rule_tree =
|
2022-11-07 15:50:28 +03:00
|
|
|
| Leaf of Desugared.Ast.rule list
|
2022-01-05 12:42:46 +03:00
|
|
|
(** Rules defining a base case piecewise. List is non-empty. *)
|
2022-11-07 15:50:28 +03:00
|
|
|
| Node of rule_tree list * Desugared.Ast.rule list
|
2022-07-13 16:00:57 +03:00
|
|
|
(** [Node (exceptions, base_case)] is a list of exceptions to a non-empty
|
|
|
|
list of rules defining a base case piecewise. *)
|
2020-11-25 18:51:19 +03:00
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** Transforms a flat list of rules into a tree, taking into account the
|
|
|
|
priorities declared between rules *)
|
2022-11-07 15:50:28 +03:00
|
|
|
let def_map_to_tree
|
|
|
|
(def_info : Desugared.Ast.ScopeDef.t)
|
2022-11-21 12:12:45 +03:00
|
|
|
(def : Desugared.Ast.rule RuleName.Map.t) : rule_tree list =
|
2022-11-07 15:50:28 +03:00
|
|
|
let exc_graph = Desugared.Dependency.build_exceptions_graph def def_info in
|
|
|
|
Desugared.Dependency.check_for_exception_cycle exc_graph;
|
2021-01-13 21:07:35 +03:00
|
|
|
(* we start by the base cases: they are the vertices which have no
|
|
|
|
successors *)
|
|
|
|
let base_cases =
|
2022-11-07 15:50:28 +03:00
|
|
|
Desugared.Dependency.ExceptionsDependencies.fold_vertex
|
2021-01-13 21:07:35 +03:00
|
|
|
(fun v base_cases ->
|
2022-11-07 15:50:28 +03:00
|
|
|
if
|
|
|
|
Desugared.Dependency.ExceptionsDependencies.out_degree exc_graph v = 0
|
|
|
|
then v :: base_cases
|
2021-01-13 21:07:35 +03:00
|
|
|
else base_cases)
|
|
|
|
exc_graph []
|
2020-12-18 17:59:15 +03:00
|
|
|
in
|
2022-11-21 12:12:45 +03:00
|
|
|
let rec build_tree (base_cases : RuleName.Set.t) : rule_tree =
|
2022-01-05 12:42:46 +03:00
|
|
|
let exceptions =
|
2022-11-07 15:50:28 +03:00
|
|
|
Desugared.Dependency.ExceptionsDependencies.pred exc_graph base_cases
|
2022-01-05 12:42:46 +03:00
|
|
|
in
|
|
|
|
let base_case_as_rule_list =
|
2022-11-21 12:12:45 +03:00
|
|
|
List.map
|
|
|
|
(fun r -> RuleName.Map.find r def)
|
|
|
|
(RuleName.Set.elements base_cases)
|
2022-01-05 12:42:46 +03:00
|
|
|
in
|
2021-01-13 21:07:35 +03:00
|
|
|
match exceptions with
|
2022-01-05 12:42:46 +03:00
|
|
|
| [] -> Leaf base_case_as_rule_list
|
|
|
|
| _ -> Node (List.map build_tree exceptions, base_case_as_rule_list)
|
2020-11-25 18:51:19 +03:00
|
|
|
in
|
2021-01-13 21:07:35 +03:00
|
|
|
List.map build_tree base_cases
|
2020-11-25 18:51:19 +03:00
|
|
|
|
2022-08-25 17:08:08 +03:00
|
|
|
(** From the {!type: rule_tree}, builds an {!constructor: Dcalc.EDefault}
|
2020-12-14 19:00:42 +03:00
|
|
|
expression in the scope language. The [~toplevel] parameter is used to know
|
|
|
|
when to place the toplevel binding in the case of functions. *)
|
2022-03-06 16:15:09 +03:00
|
|
|
let rec rule_tree_to_expr
|
|
|
|
~(toplevel : bool)
|
2022-12-02 18:42:29 +03:00
|
|
|
~(is_reentrant_var : bool)
|
2022-03-06 16:15:09 +03:00
|
|
|
(ctx : ctx)
|
|
|
|
(def_pos : Pos.t)
|
2023-02-27 11:50:42 +03:00
|
|
|
(params : Desugared.Ast.expr Var.t list option)
|
2022-11-07 15:50:28 +03:00
|
|
|
(tree : rule_tree) : untyped Ast.expr boxed =
|
2022-08-26 16:21:47 +03:00
|
|
|
let emark = Untyped { pos = def_pos } in
|
2022-01-05 12:42:46 +03:00
|
|
|
let exceptions, base_rules =
|
2020-12-18 17:59:15 +03:00
|
|
|
match tree with Leaf r -> [], r | Node (exceptions, r) -> exceptions, r
|
|
|
|
in
|
2023-02-20 19:21:44 +03:00
|
|
|
(* because each rule has its own variables parameters and we want to convert
|
|
|
|
the whole rule tree into a function, we need to perform some alpha-renaming
|
|
|
|
of all the expressions *)
|
2022-11-07 15:50:28 +03:00
|
|
|
let substitute_parameter
|
|
|
|
(e : Desugared.Ast.expr boxed)
|
|
|
|
(rule : Desugared.Ast.rule) : Desugared.Ast.expr boxed =
|
2023-02-27 11:50:42 +03:00
|
|
|
match params, rule.Desugared.Ast.rule_parameter with
|
2023-02-20 19:21:44 +03:00
|
|
|
| Some new_params, Some old_params_with_types ->
|
|
|
|
let old_params, _ = List.split old_params_with_types in
|
|
|
|
let old_params = Array.of_list old_params in
|
|
|
|
let new_params = Array.of_list new_params in
|
|
|
|
let binder = Bindlib.bind_mvar old_params (Marked.unmark e) in
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Marked.mark (Marked.get_mark e)
|
|
|
|
@@ Bindlib.box_apply2
|
2023-02-20 19:21:44 +03:00
|
|
|
(fun binder new_param -> Bindlib.msubst binder new_param)
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
binder
|
2023-02-20 19:21:44 +03:00
|
|
|
(new_params |> Array.map Bindlib.box_var |> Bindlib.box_array)
|
2020-11-25 18:51:19 +03:00
|
|
|
| None, None -> e
|
|
|
|
| _ -> assert false
|
|
|
|
(* should not happen *)
|
|
|
|
in
|
2022-03-06 16:15:09 +03:00
|
|
|
let ctx =
|
2023-02-27 11:50:42 +03:00
|
|
|
match params with
|
2022-03-06 16:15:09 +03:00
|
|
|
| None -> ctx
|
2023-02-20 19:21:44 +03:00
|
|
|
| Some new_params ->
|
|
|
|
ListLabels.fold_left new_params ~init:ctx ~f:(fun ctx new_param ->
|
|
|
|
match Var.Map.find_opt new_param ctx.var_mapping with
|
|
|
|
| None ->
|
|
|
|
let new_param_scope = Var.make (Bindlib.name_of new_param) in
|
|
|
|
{
|
|
|
|
ctx with
|
|
|
|
var_mapping =
|
|
|
|
Var.Map.add new_param new_param_scope ctx.var_mapping;
|
|
|
|
}
|
|
|
|
| Some _ ->
|
|
|
|
(* We only create a mapping if none exists because
|
|
|
|
[rule_tree_to_expr] is called recursively on the exceptions of
|
|
|
|
the tree and we don't want to create a new Scopelang variable for
|
|
|
|
the parameter at each tree level. *)
|
|
|
|
ctx)
|
2022-03-06 16:15:09 +03:00
|
|
|
in
|
2022-01-05 12:42:46 +03:00
|
|
|
let base_just_list =
|
|
|
|
List.map
|
2022-11-07 15:50:28 +03:00
|
|
|
(fun rule -> substitute_parameter rule.Desugared.Ast.rule_just rule)
|
2022-01-05 12:42:46 +03:00
|
|
|
base_rules
|
|
|
|
in
|
|
|
|
let base_cons_list =
|
|
|
|
List.map
|
2022-11-07 15:50:28 +03:00
|
|
|
(fun rule -> substitute_parameter rule.Desugared.Ast.rule_cons rule)
|
2022-01-05 12:42:46 +03:00
|
|
|
base_rules
|
|
|
|
in
|
2022-11-07 15:50:28 +03:00
|
|
|
let translate_and_unbox_list (list : Desugared.Ast.expr boxed list) :
|
|
|
|
untyped Ast.expr boxed list =
|
2022-03-06 16:15:09 +03:00
|
|
|
List.map
|
|
|
|
(fun e ->
|
2022-07-13 16:25:11 +03:00
|
|
|
(* There are two levels of boxing here, the outermost is introduced by
|
2022-03-06 16:15:09 +03:00
|
|
|
the [translate_expr] function for which all of the bindings should
|
|
|
|
have been closed by now, so we can safely unbox. *)
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
translate_expr ctx (Expr.unbox e))
|
2022-03-06 16:15:09 +03:00
|
|
|
list
|
|
|
|
in
|
2022-01-05 12:42:46 +03:00
|
|
|
let default_containing_base_cases =
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.make_default
|
|
|
|
(List.map2
|
|
|
|
(fun base_just base_cons ->
|
|
|
|
Expr.make_default []
|
|
|
|
(* Here we insert the logging command that records when a decision
|
|
|
|
is taken for the value of a variable. *)
|
|
|
|
(tag_with_log_entry base_just PosRecordIfTrueBool [])
|
|
|
|
base_cons emark)
|
|
|
|
(translate_and_unbox_list base_just_list)
|
|
|
|
(translate_and_unbox_list base_cons_list))
|
|
|
|
(Expr.elit (LBool false) emark)
|
|
|
|
(Expr.elit LEmptyError emark)
|
|
|
|
emark
|
2022-01-05 12:42:46 +03:00
|
|
|
in
|
2020-12-18 17:59:15 +03:00
|
|
|
let exceptions =
|
2022-12-02 14:07:26 +03:00
|
|
|
List.map
|
2023-02-27 11:50:42 +03:00
|
|
|
(rule_tree_to_expr ~toplevel:false ~is_reentrant_var ctx def_pos params)
|
2022-12-02 14:07:26 +03:00
|
|
|
exceptions
|
2020-12-18 17:59:15 +03:00
|
|
|
in
|
2020-11-27 18:27:10 +03:00
|
|
|
let default =
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
Expr.make_default exceptions
|
|
|
|
(Expr.elit (LBool true) emark)
|
|
|
|
default_containing_base_cases emark
|
2020-11-27 18:27:10 +03:00
|
|
|
in
|
2023-02-27 11:50:42 +03:00
|
|
|
match params, (List.hd base_rules).Desugared.Ast.rule_parameter with
|
2020-11-25 18:51:19 +03:00
|
|
|
| None, None -> default
|
2023-02-20 19:21:44 +03:00
|
|
|
| Some new_params, Some ls ->
|
|
|
|
let _, tys = List.split ls in
|
2020-11-27 18:27:10 +03:00
|
|
|
if toplevel then
|
2020-12-31 02:28:26 +03:00
|
|
|
(* When we're creating a function from multiple defaults, we must check
|
2022-12-02 14:07:26 +03:00
|
|
|
that the result returned by the function is not empty, unless we're
|
2022-12-02 18:42:29 +03:00
|
|
|
dealing with a context variable which is reentrant (either in the
|
|
|
|
caller or callee). In this case the ErrorOnEmpty will be added later in
|
|
|
|
the scopelang->dcalc translation. *)
|
2022-12-02 14:07:26 +03:00
|
|
|
let default =
|
2022-12-02 18:42:29 +03:00
|
|
|
if is_reentrant_var then default else Expr.eerroronempty default emark
|
2022-12-02 14:07:26 +03:00
|
|
|
in
|
2023-02-20 19:21:44 +03:00
|
|
|
|
2022-08-25 13:09:51 +03:00
|
|
|
Expr.make_abs
|
2023-02-20 19:21:44 +03:00
|
|
|
(new_params
|
|
|
|
|> List.map (fun x -> Var.Map.find x ctx.var_mapping)
|
|
|
|
|> Array.of_list)
|
|
|
|
default tys def_pos
|
2020-11-27 18:27:10 +03:00
|
|
|
else default
|
2020-12-14 19:00:42 +03:00
|
|
|
| _ -> (* should not happen *) assert false
|
2020-11-25 18:51:19 +03:00
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** {1 AST translation} *)
|
2020-11-25 18:51:19 +03:00
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** Translates a definition inside a scope, the resulting expression should be
|
2022-08-25 17:08:08 +03:00
|
|
|
an {!constructor: Dcalc.EDefault} *)
|
2022-03-06 16:15:09 +03:00
|
|
|
let translate_def
|
|
|
|
(ctx : ctx)
|
2022-11-07 15:50:28 +03:00
|
|
|
(def_info : Desugared.Ast.ScopeDef.t)
|
2022-11-21 12:12:45 +03:00
|
|
|
(def : Desugared.Ast.rule RuleName.Map.t)
|
2023-02-27 11:50:42 +03:00
|
|
|
(params : (Uid.MarkedString.info * typ) list option)
|
2022-08-25 18:29:00 +03:00
|
|
|
(typ : typ)
|
2022-11-07 15:50:28 +03:00
|
|
|
(io : Desugared.Ast.io)
|
2022-02-09 17:56:48 +03:00
|
|
|
~(is_cond : bool)
|
2022-11-07 15:50:28 +03:00
|
|
|
~(is_subscope_var : bool) : untyped Ast.expr boxed =
|
2020-11-25 16:35:26 +03:00
|
|
|
(* Here, we have to transform this list of rules into a default tree. *)
|
2023-02-27 11:50:42 +03:00
|
|
|
let check_params pvars =
|
|
|
|
match params, pvars with
|
|
|
|
| None, None -> true
|
|
|
|
| None, Some _ | Some _, None -> false
|
|
|
|
| Some pdefs, Some pvars -> (
|
|
|
|
try
|
|
|
|
List.for_all2
|
|
|
|
(fun (lbl, ty1) (var, ty2) ->
|
|
|
|
String.equal (Marked.unmark lbl) (Bindlib.name_of var)
|
|
|
|
&& Type.equal ty1 ty2)
|
|
|
|
pdefs pvars
|
|
|
|
with Invalid_argument _ -> false)
|
2022-12-02 18:42:29 +03:00
|
|
|
in
|
2023-02-27 11:50:42 +03:00
|
|
|
let wrong_params =
|
|
|
|
RuleName.Map.bindings
|
|
|
|
(RuleName.Map.filter
|
|
|
|
(fun _ r -> not (check_params r.D.rule_parameter))
|
|
|
|
def)
|
2020-12-31 02:28:26 +03:00
|
|
|
in
|
2023-02-27 11:50:42 +03:00
|
|
|
if wrong_params <> [] then
|
|
|
|
Errors.raise_multispanned_error
|
|
|
|
((Some "Declared here", Marked.get_mark typ)
|
|
|
|
:: List.map
|
|
|
|
(fun (r, _) -> None, Marked.get_mark (RuleName.get_info r))
|
|
|
|
wrong_params)
|
|
|
|
"The arguments of these definitions don't match the declaration."
|
2022-01-28 19:31:31 +03:00
|
|
|
else
|
2023-02-27 11:50:42 +03:00
|
|
|
let top_list = def_map_to_tree def_info def in
|
|
|
|
let is_input =
|
|
|
|
match Marked.unmark io.Desugared.Ast.io_input with
|
|
|
|
| OnlyInput -> true
|
|
|
|
| _ -> false
|
|
|
|
in
|
|
|
|
let is_reentrant =
|
|
|
|
match Marked.unmark io.Desugared.Ast.io_input with
|
|
|
|
| Reentrant -> true
|
|
|
|
| _ -> false
|
|
|
|
in
|
|
|
|
let top_value : Desugared.Ast.rule option =
|
|
|
|
if is_cond && ((not is_subscope_var) || (is_subscope_var && is_input))
|
|
|
|
then
|
|
|
|
(* We add the bottom [false] value for conditions, only for the scope
|
|
|
|
where the condition is declared. Except when the variable is an
|
|
|
|
input, where we want the [false] to be added at each caller parent
|
|
|
|
scope. *)
|
|
|
|
Some
|
|
|
|
(Desugared.Ast.always_false_rule
|
|
|
|
(Desugared.Ast.ScopeDef.get_position def_info)
|
|
|
|
params)
|
|
|
|
else None
|
|
|
|
in
|
|
|
|
if
|
|
|
|
RuleName.Map.cardinal def = 0
|
|
|
|
&& is_subscope_var
|
|
|
|
(* Here we have a special case for the empty definitions. Indeed, we could
|
|
|
|
use the code for the regular case below that would create a convoluted
|
|
|
|
default always returning empty error, and this would be correct. But it
|
|
|
|
gets more complicated with functions. Indeed, if we create an empty
|
|
|
|
definition for a subscope argument whose type is a function, we get
|
|
|
|
something like [fun () -> (fun real_param -> < ... >)] that is passed
|
|
|
|
as an argument to the subscope. The sub-scope de-thunks but the
|
|
|
|
de-thunking does not return empty error, signalling there is not
|
|
|
|
reentrant variable, because functions are values! So the subscope does
|
|
|
|
not see that there is not reentrant variable and does not pick its
|
|
|
|
internal definition instead. See
|
|
|
|
[test/test_scope/subscope_function_arg_not_defined.catala_en] for a
|
|
|
|
test case exercising that subtlety.
|
|
|
|
|
|
|
|
To avoid this complication we special case here and put an empty error
|
|
|
|
for all subscope variables that are not defined. It covers the subtlety
|
|
|
|
with functions described above but also conditions with the false
|
|
|
|
default value. *)
|
|
|
|
&& not (is_cond && is_input)
|
|
|
|
(* However, this special case suffers from an exception: when a condition
|
|
|
|
is defined as an OnlyInput to a subscope, since the [false] default
|
|
|
|
value will not be provided by the calee scope, it has to be placed in
|
|
|
|
the caller. *)
|
|
|
|
then
|
|
|
|
let m = Untyped { pos = Desugared.Ast.ScopeDef.get_position def_info } in
|
|
|
|
let empty_error = Expr.elit LEmptyError m in
|
|
|
|
match params with
|
|
|
|
| Some ps ->
|
|
|
|
let labels, tys = List.split ps in
|
|
|
|
Expr.make_abs
|
|
|
|
(Array.of_list
|
|
|
|
(List.map (fun lbl -> Var.make (Marked.unmark lbl)) labels))
|
|
|
|
empty_error tys (Expr.mark_pos m)
|
|
|
|
| _ -> empty_error
|
|
|
|
else
|
|
|
|
rule_tree_to_expr ~toplevel:true ~is_reentrant_var:is_reentrant ctx
|
|
|
|
(Desugared.Ast.ScopeDef.get_position def_info)
|
|
|
|
(Option.map
|
|
|
|
(List.map (fun (lbl, _) -> Var.make (Marked.unmark lbl)))
|
|
|
|
params)
|
|
|
|
(match top_list, top_value with
|
|
|
|
| [], None ->
|
|
|
|
(* In this case, there are no rules to define the expression and no
|
|
|
|
default value so we put an empty rule. *)
|
|
|
|
Leaf [Desugared.Ast.empty_rule (Marked.get_mark typ) params]
|
|
|
|
| [], Some top_value ->
|
|
|
|
(* In this case, there are no rules to define the expression but a
|
|
|
|
default value so we put it. *)
|
|
|
|
Leaf [top_value]
|
|
|
|
| _, Some top_value ->
|
|
|
|
(* When there are rules + a default value, we put the rules as
|
|
|
|
exceptions to the default value *)
|
|
|
|
Node (top_list, [top_value])
|
|
|
|
| [top_tree], None -> top_tree
|
|
|
|
| _, None ->
|
|
|
|
Node
|
|
|
|
(top_list, [Desugared.Ast.empty_rule (Marked.get_mark typ) params]))
|
2020-11-25 16:35:26 +03:00
|
|
|
|
2022-11-28 17:37:32 +03:00
|
|
|
let translate_rule ctx (scope : Desugared.Ast.scope) = function
|
|
|
|
| Desugared.Dependency.Vertex.Var (var, state) -> (
|
|
|
|
let scope_def =
|
|
|
|
Desugared.Ast.ScopeDefMap.find
|
|
|
|
(Desugared.Ast.ScopeDef.Var (var, state))
|
|
|
|
scope.scope_defs
|
|
|
|
in
|
2023-02-27 11:50:42 +03:00
|
|
|
let var_def = scope_def.D.scope_def_rules in
|
|
|
|
let var_params = scope_def.D.scope_def_parameters in
|
|
|
|
let var_typ = scope_def.D.scope_def_typ in
|
|
|
|
let is_cond = scope_def.D.scope_def_is_condition in
|
2022-11-28 17:37:32 +03:00
|
|
|
match Marked.unmark scope_def.Desugared.Ast.scope_def_io.io_input with
|
|
|
|
| OnlyInput when not (RuleName.Map.is_empty var_def) ->
|
|
|
|
(* If the variable is tagged as input, then it shall not be redefined. *)
|
|
|
|
Errors.raise_multispanned_error
|
|
|
|
((Some "Incriminated variable:", Marked.get_mark (ScopeVar.get_info var))
|
|
|
|
:: List.map
|
|
|
|
(fun (rule, _) ->
|
|
|
|
( Some "Incriminated variable definition:",
|
|
|
|
Marked.get_mark (RuleName.get_info rule) ))
|
|
|
|
(RuleName.Map.bindings var_def))
|
|
|
|
"It is impossible to give a definition to a scope variable tagged as \
|
|
|
|
input."
|
|
|
|
| OnlyInput -> []
|
|
|
|
(* we do not provide any definition for an input-only variable *)
|
|
|
|
| _ ->
|
|
|
|
let expr_def =
|
|
|
|
translate_def ctx
|
|
|
|
(Desugared.Ast.ScopeDef.Var (var, state))
|
2023-02-27 11:50:42 +03:00
|
|
|
var_def var_params var_typ scope_def.Desugared.Ast.scope_def_io
|
|
|
|
~is_cond ~is_subscope_var:false
|
2022-11-28 17:37:32 +03:00
|
|
|
in
|
|
|
|
let scope_var =
|
|
|
|
match ScopeVar.Map.find var ctx.scope_var_mapping, state with
|
|
|
|
| WholeVar v, None -> v
|
|
|
|
| States states, Some state -> List.assoc state states
|
|
|
|
| _ -> failwith "should not happen"
|
|
|
|
in
|
|
|
|
[
|
|
|
|
Ast.Definition
|
|
|
|
( ( ScopelangScopeVar
|
|
|
|
(scope_var, Marked.get_mark (ScopeVar.get_info scope_var)),
|
|
|
|
Marked.get_mark (ScopeVar.get_info scope_var) ),
|
|
|
|
var_typ,
|
|
|
|
scope_def.Desugared.Ast.scope_def_io,
|
|
|
|
Expr.unbox expr_def );
|
|
|
|
])
|
|
|
|
| Desugared.Dependency.Vertex.SubScope sub_scope_index ->
|
|
|
|
(* Before calling the sub_scope, we need to include all the re-definitions
|
|
|
|
of subscope parameters*)
|
|
|
|
let sub_scope =
|
|
|
|
SubScopeName.Map.find sub_scope_index scope.scope_sub_scopes
|
|
|
|
in
|
|
|
|
let sub_scope_vars_redefs_candidates =
|
|
|
|
Desugared.Ast.ScopeDefMap.filter
|
|
|
|
(fun def_key scope_def ->
|
|
|
|
match def_key with
|
|
|
|
| Desugared.Ast.ScopeDef.Var _ -> false
|
|
|
|
| Desugared.Ast.ScopeDef.SubScopeVar (sub_scope_index', _, _) ->
|
|
|
|
sub_scope_index = sub_scope_index'
|
|
|
|
(* We exclude subscope variables that have 0 re-definitions and are
|
|
|
|
not visible in the input of the subscope *)
|
|
|
|
&& not
|
|
|
|
((match
|
|
|
|
Marked.unmark scope_def.Desugared.Ast.scope_def_io.io_input
|
|
|
|
with
|
|
|
|
| Desugared.Ast.NoInput -> true
|
|
|
|
| _ -> false)
|
|
|
|
&& RuleName.Map.is_empty scope_def.scope_def_rules))
|
|
|
|
scope.scope_defs
|
|
|
|
in
|
|
|
|
let sub_scope_vars_redefs =
|
|
|
|
Desugared.Ast.ScopeDefMap.mapi
|
|
|
|
(fun def_key scope_def ->
|
|
|
|
let def = scope_def.Desugared.Ast.scope_def_rules in
|
|
|
|
let def_typ = scope_def.scope_def_typ in
|
|
|
|
let is_cond = scope_def.scope_def_is_condition in
|
|
|
|
match def_key with
|
|
|
|
| Desugared.Ast.ScopeDef.Var _ -> assert false (* should not happen *)
|
|
|
|
| Desugared.Ast.ScopeDef.SubScopeVar (sscope, sub_scope_var, pos) ->
|
|
|
|
(* This definition redefines a variable of the correct subscope. But
|
|
|
|
we have to check that this redefinition is allowed with respect
|
|
|
|
to the io parameters of that subscope variable. *)
|
|
|
|
(match
|
|
|
|
Marked.unmark scope_def.Desugared.Ast.scope_def_io.io_input
|
|
|
|
with
|
|
|
|
| Desugared.Ast.NoInput ->
|
|
|
|
Errors.raise_multispanned_error
|
|
|
|
(( Some "Incriminated subscope:",
|
|
|
|
Marked.get_mark (SubScopeName.get_info sscope) )
|
|
|
|
:: ( Some "Incriminated variable:",
|
|
|
|
Marked.get_mark (ScopeVar.get_info sub_scope_var) )
|
|
|
|
:: List.map
|
|
|
|
(fun (rule, _) ->
|
|
|
|
( Some "Incriminated subscope variable definition:",
|
|
|
|
Marked.get_mark (RuleName.get_info rule) ))
|
|
|
|
(RuleName.Map.bindings def))
|
|
|
|
"It is impossible to give a definition to a subscope variable \
|
|
|
|
not tagged as input or context."
|
|
|
|
| OnlyInput when RuleName.Map.is_empty def && not is_cond ->
|
|
|
|
(* If the subscope variable is tagged as input, then it shall be
|
|
|
|
defined. *)
|
|
|
|
Errors.raise_multispanned_error
|
|
|
|
[
|
|
|
|
( Some "Incriminated subscope:",
|
|
|
|
Marked.get_mark (SubScopeName.get_info sscope) );
|
|
|
|
Some "Incriminated variable:", pos;
|
|
|
|
]
|
|
|
|
"This subscope variable is a mandatory input but no definition \
|
|
|
|
was provided."
|
|
|
|
| _ -> ());
|
|
|
|
(* Now that all is good, we can proceed with translating this
|
|
|
|
redefinition to a proper Scopelang term. *)
|
|
|
|
let expr_def =
|
2023-02-27 11:50:42 +03:00
|
|
|
translate_def ctx def_key def scope_def.D.scope_def_parameters
|
|
|
|
def_typ scope_def.Desugared.Ast.scope_def_io ~is_cond
|
2022-11-28 17:37:32 +03:00
|
|
|
~is_subscope_var:true
|
|
|
|
in
|
|
|
|
let subscop_real_name =
|
|
|
|
SubScopeName.Map.find sub_scope_index scope.scope_sub_scopes
|
|
|
|
in
|
|
|
|
let var_pos = Desugared.Ast.ScopeDef.get_position def_key in
|
|
|
|
Ast.Definition
|
|
|
|
( ( SubScopeVar
|
|
|
|
( subscop_real_name,
|
|
|
|
(sub_scope_index, var_pos),
|
|
|
|
match
|
|
|
|
ScopeVar.Map.find sub_scope_var ctx.scope_var_mapping
|
|
|
|
with
|
|
|
|
| WholeVar v -> v, var_pos
|
|
|
|
| States states ->
|
|
|
|
(* When defining a sub-scope variable, we always define
|
|
|
|
its first state in the sub-scope. *)
|
|
|
|
snd (List.hd states), var_pos ),
|
|
|
|
var_pos ),
|
|
|
|
def_typ,
|
|
|
|
scope_def.Desugared.Ast.scope_def_io,
|
|
|
|
Expr.unbox expr_def ))
|
|
|
|
sub_scope_vars_redefs_candidates
|
|
|
|
in
|
|
|
|
let sub_scope_vars_redefs =
|
|
|
|
List.map snd (Desugared.Ast.ScopeDefMap.bindings sub_scope_vars_redefs)
|
|
|
|
in
|
|
|
|
sub_scope_vars_redefs
|
|
|
|
@ [
|
|
|
|
Ast.Call
|
|
|
|
( sub_scope,
|
|
|
|
sub_scope_index,
|
|
|
|
Untyped
|
|
|
|
{ pos = Marked.get_mark (SubScopeName.get_info sub_scope_index) }
|
|
|
|
);
|
|
|
|
]
|
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** Translates a scope *)
|
2022-11-07 15:50:28 +03:00
|
|
|
let translate_scope (ctx : ctx) (scope : Desugared.Ast.scope) :
|
|
|
|
untyped Ast.scope_decl =
|
|
|
|
let scope_dependencies =
|
|
|
|
Desugared.Dependency.build_scope_dependencies scope
|
|
|
|
in
|
|
|
|
Desugared.Dependency.check_for_cycle scope scope_dependencies;
|
2020-11-25 16:35:26 +03:00
|
|
|
let scope_ordering =
|
2022-11-07 15:50:28 +03:00
|
|
|
Desugared.Dependency.correct_computation_ordering scope_dependencies
|
2020-11-25 16:35:26 +03:00
|
|
|
in
|
|
|
|
let scope_decl_rules =
|
2022-11-28 17:37:32 +03:00
|
|
|
List.flatten (List.map (translate_rule ctx scope) scope_ordering)
|
2020-11-25 16:35:26 +03:00
|
|
|
in
|
2022-03-06 16:15:09 +03:00
|
|
|
(* Then, after having computed all the scopes variables, we add the
|
|
|
|
assertions. TODO: the assertions should be interleaved with the
|
|
|
|
definitions! *)
|
2020-12-10 20:11:43 +03:00
|
|
|
let scope_decl_rules =
|
|
|
|
scope_decl_rules
|
2022-03-06 16:15:09 +03:00
|
|
|
@ List.map
|
|
|
|
(fun e ->
|
Swap boxing and annotations in expressions
This was the only reasonable solution I found to the issue raised
[here](https://github.com/CatalaLang/catala/pull/334#discussion_r987175884).
This was a pretty tedious rewrite, but it should now ensure we are doing things
correctly. As a bonus, the "smart" expression constructors are now used
everywhere to build expressions (so another refactoring like this one should be
much easier) and this makes the code overall feel more
straightforward (`Bindlib.box_apply` or `let+` no longer need to be visible!)
---
Basically, we were using values of type `gexpr box = naked_gexpr marked box`
throughout when (re-)building expressions. This was done 99% of the time by
using `Bindlib.box_apply add_mark naked_e` right after building `naked_e`. In
lots of places, we needed to recover the annotation of this expression later on,
typically to build its parent term (to inherit the position, or build the type).
Since it wasn't always possible to wrap these uses within `box_apply` (esp. as
bindlib boxes aren't a monad), here and there we had to call `Bindlib.unbox`,
just to recover the position or type. This had the very unpleasant effect of
forcing the resolution of the whole box (including applying any stored closures)
to reach the top-level annotation which isn't even dependant on specific
variable bindings. Then, generally, throwing away the result.
Therefore, the change proposed here transforms
- `naked_gexpr marked Bindlib.box` into
- `naked_gexpr Bindlib.box marked` (aliased to `boxed_gexpr` or `gexpr boxed` for
convenience)
This means only
1. not fitting the mark into the box right away when building, and
2. accessing the top-level mark directly without unboxing
The functions for building terms from module `Shared_ast.Expr` could be changed
easily. But then they needed to be consistently used throughout, without
manually building terms through `Bindlib.apply_box` -- which covers most of the
changes in this patch.
`Expr.Box.inj` is provided to swap back to a box, before binding for example.
Additionally, this gives a 40% speedup on `make -C examples pass_all_tests`,
which hints at the amount of unnecessary work we were doing --'
2022-10-06 20:13:45 +03:00
|
|
|
let scope_e = translate_expr ctx (Expr.unbox e) in
|
2022-11-07 15:50:28 +03:00
|
|
|
Ast.Assertion (Expr.unbox scope_e))
|
|
|
|
scope.Desugared.Ast.scope_assertions
|
2020-12-10 20:11:43 +03:00
|
|
|
in
|
2020-11-27 13:37:21 +03:00
|
|
|
let scope_sig =
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.fold
|
2022-11-07 15:50:28 +03:00
|
|
|
(fun var (states : Desugared.Ast.var_or_states) acc ->
|
2022-03-06 16:15:09 +03:00
|
|
|
match states with
|
|
|
|
| WholeVar ->
|
|
|
|
let scope_def =
|
2022-11-07 15:50:28 +03:00
|
|
|
Desugared.Ast.ScopeDefMap.find
|
|
|
|
(Desugared.Ast.ScopeDef.Var (var, None))
|
|
|
|
scope.scope_defs
|
2022-03-06 16:15:09 +03:00
|
|
|
in
|
|
|
|
let typ = scope_def.scope_def_typ in
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.add
|
|
|
|
(match ScopeVar.Map.find var ctx.scope_var_mapping with
|
2022-03-06 16:15:09 +03:00
|
|
|
| WholeVar v -> v
|
|
|
|
| States _ -> failwith "should not happen")
|
|
|
|
(typ, scope_def.scope_def_io)
|
|
|
|
acc
|
|
|
|
| States states ->
|
|
|
|
(* What happens in the case of variables with multiple states is
|
2022-11-07 15:50:28 +03:00
|
|
|
interesting. We need to create as many Var entries in the scope
|
|
|
|
signature as there are states. *)
|
2022-03-06 16:15:09 +03:00
|
|
|
List.fold_left
|
2022-08-25 13:09:51 +03:00
|
|
|
(fun acc (state : StateName.t) ->
|
2022-03-06 16:15:09 +03:00
|
|
|
let scope_def =
|
2022-11-07 15:50:28 +03:00
|
|
|
Desugared.Ast.ScopeDefMap.find
|
|
|
|
(Desugared.Ast.ScopeDef.Var (var, Some state))
|
2022-03-06 16:15:09 +03:00
|
|
|
scope.scope_defs
|
|
|
|
in
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.add
|
|
|
|
(match ScopeVar.Map.find var ctx.scope_var_mapping with
|
2022-03-06 16:15:09 +03:00
|
|
|
| WholeVar _ -> failwith "should not happen"
|
|
|
|
| States states' -> List.assoc state states')
|
|
|
|
(scope_def.scope_def_typ, scope_def.scope_def_io)
|
|
|
|
acc)
|
|
|
|
acc states)
|
2022-11-21 12:12:45 +03:00
|
|
|
scope.scope_vars ScopeVar.Map.empty
|
2020-11-27 13:37:21 +03:00
|
|
|
in
|
2022-09-30 17:40:10 +03:00
|
|
|
let pos = Marked.get_mark (ScopeName.get_info scope.scope_uid) in
|
2020-11-27 13:37:21 +03:00
|
|
|
{
|
2022-11-07 15:50:28 +03:00
|
|
|
Ast.scope_decl_name = scope.scope_uid;
|
|
|
|
Ast.scope_decl_rules;
|
|
|
|
Ast.scope_sig;
|
|
|
|
Ast.scope_mark = Untyped { pos };
|
2020-11-27 13:37:21 +03:00
|
|
|
}
|
2020-11-25 16:35:26 +03:00
|
|
|
|
2020-12-14 19:00:42 +03:00
|
|
|
(** {1 API} *)
|
|
|
|
|
2022-11-07 15:50:28 +03:00
|
|
|
let translate_program (pgrm : Desugared.Ast.program) : untyped Ast.program =
|
|
|
|
(* First we give mappings to all the locations between Desugared and This
|
|
|
|
involves creating a new Scopelang scope variable for every state of a
|
|
|
|
Desugared variable. *)
|
2022-03-06 16:15:09 +03:00
|
|
|
let ctx =
|
2022-11-17 19:13:35 +03:00
|
|
|
(* Todo: since we rename all scope vars at this point, it would be better to
|
|
|
|
have different types for Desugared.ScopeVar.t and Scopelang.ScopeVar.t *)
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeName.Map.fold
|
2022-03-06 16:15:09 +03:00
|
|
|
(fun _scope scope_decl ctx ->
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.fold
|
2022-11-07 15:50:28 +03:00
|
|
|
(fun scope_var (states : Desugared.Ast.var_or_states) ctx ->
|
2022-11-28 17:37:32 +03:00
|
|
|
let var_name, var_pos = ScopeVar.get_info scope_var in
|
|
|
|
let new_var =
|
|
|
|
match states with
|
|
|
|
| Desugared.Ast.WholeVar ->
|
|
|
|
WholeVar (ScopeVar.fresh (var_name, var_pos))
|
|
|
|
| States states ->
|
|
|
|
let var_prefix = var_name ^ "_" in
|
|
|
|
let state_var state =
|
|
|
|
ScopeVar.fresh
|
|
|
|
(Marked.map_under_mark (( ^ ) var_prefix)
|
|
|
|
(StateName.get_info state))
|
|
|
|
in
|
|
|
|
States (List.map (fun state -> state, state_var state) states)
|
|
|
|
in
|
|
|
|
{
|
|
|
|
ctx with
|
|
|
|
scope_var_mapping =
|
|
|
|
ScopeVar.Map.add scope_var new_var ctx.scope_var_mapping;
|
|
|
|
})
|
2022-11-07 15:50:28 +03:00
|
|
|
scope_decl.Desugared.Ast.scope_vars ctx)
|
|
|
|
pgrm.Desugared.Ast.program_scopes
|
2022-11-28 18:23:27 +03:00
|
|
|
{
|
|
|
|
scope_var_mapping = ScopeVar.Map.empty;
|
|
|
|
var_mapping = Var.Map.empty;
|
|
|
|
decl_ctx = pgrm.program_ctx;
|
|
|
|
}
|
2022-03-06 16:15:09 +03:00
|
|
|
in
|
2022-11-17 19:13:35 +03:00
|
|
|
let ctx_scopes =
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeName.Map.map
|
2022-11-17 19:13:35 +03:00
|
|
|
(fun out_str ->
|
|
|
|
let out_struct_fields =
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.fold
|
2022-11-17 19:13:35 +03:00
|
|
|
(fun var fld out_map ->
|
|
|
|
let var' =
|
2022-11-21 12:12:45 +03:00
|
|
|
match ScopeVar.Map.find var ctx.scope_var_mapping with
|
2022-11-17 19:13:35 +03:00
|
|
|
| WholeVar v -> v
|
|
|
|
| States l -> snd (List.hd (List.rev l))
|
|
|
|
in
|
2022-11-21 12:12:45 +03:00
|
|
|
ScopeVar.Map.add var' fld out_map)
|
|
|
|
out_str.out_struct_fields ScopeVar.Map.empty
|
2022-11-17 19:13:35 +03:00
|
|
|
in
|
|
|
|
{ out_str with out_struct_fields })
|
2022-11-07 15:50:28 +03:00
|
|
|
pgrm.Desugared.Ast.program_ctx.ctx_scopes
|
2022-11-17 19:13:35 +03:00
|
|
|
in
|
2020-12-04 18:40:17 +03:00
|
|
|
{
|
2023-02-13 17:00:23 +03:00
|
|
|
Ast.program_topdefs =
|
2023-01-23 14:19:36 +03:00
|
|
|
TopdefName.Map.map
|
|
|
|
(fun (e, ty) -> Expr.unbox (translate_expr ctx e), ty)
|
2023-02-13 17:00:23 +03:00
|
|
|
pgrm.program_topdefs;
|
2022-11-21 12:12:45 +03:00
|
|
|
Ast.program_scopes =
|
|
|
|
ScopeName.Map.map (translate_scope ctx) pgrm.program_scopes;
|
2022-11-17 19:13:35 +03:00
|
|
|
program_ctx = { pgrm.program_ctx with ctx_scopes };
|
2020-12-04 18:40:17 +03:00
|
|
|
}
|