The i8042 controller with its attached devices, the PS2 keyboard and
mouse, rely on x86-specific IO instructions to work. Therefore, move
them to the Arch/x86 directory to make it easier to omit the handling
code of these devices.
The ISA IDE controller code makes sense to be compiled in a x86 build as
it relies on access to the x86 IO space. For other architectures, we can
just omit the code as there's no way we can use that code again.
To ensure we can omit the code easily, we move it to the Arch/x86
directory.
The AHCI code doesn't rely on x86 IO at all as it only uses memory
mapped IO so we can simply remove the header.
We also simply don't use x86 IO in the Intel graphics driver, so we can
simply remove the include of the x86 IO header there too.
Everything else was a bunch of stale includes to the x86 IO header and
are actually not necessary, so let's remove them to make it easier to
compile non-x86 Kernel builds.
The VMWare backdoor handling code involves many x86-specific
instructions and therefore should be in the Arch/x86 directory. This
ensures we can easily omit the code in compile-time for non-x86 builds.
It seems more correct to let each platform to define its own sequence of
initialization of the PCI bus, so let's remove the #if flags and just
put the entire Initializer.cpp file in the appropriate code directory.
Only use the Bochs debug output if we compile a x86 build since bochs
debug output relies on x86 specific instructions.
We also remove the CONSOLE_OUT_TO_BOCHS_DEBUG_PORT flag as we always
compile bochs debug output for x86 builds and we always want to include
the bochs debug output capability as it is very handy and doesn't hurt
bare metal hardware or do any other problem besides taking a small
amount of CPU cycles.
The simple PCI::HostBridge class implements access to the PCI
configuration space by using x86 IO instructions. Therefore, it should
be put in the Arch/x86/PCI directory so it can be easily omitted for
non-x86 builds.
kprintf should not really care about the hardware-specific details of
each UART or serial port out there, so instead of using x86 specific
instructions, let's ensure that we will compile only the relevant code
for debug output for a targeted-specific platform.
The RTC and CMOS are currently only supported for x86 platforms and use
specific x86 instructions to produce only certain x86 plaform operations
and results, therefore, we move them to the Arch/x86 specific directory.
Many code patterns and hardware procedures rely on reliable delay in the
microseconds granularity, and since they are using such delays which are
valid cases, but should not rely on x86 specific code, we allow to
determine in compile time the proper platform-specific code to use to
invoke such delays.
We only use the RTC code in the Kernel, so it doesn't make sense to make
the RTC namespace outside of it. In addition to that, we will need later
on to use the RTC in an x86 specific manner and this will help us to use
this code in such fashion.
We move QEMU and VirtualBox shutdown sequences to a separate file, as
well as moving the i8042 reboot code sequence too to another file.
This allows us to abstract specific methods from the power state node
code of the SysFS filesystem, to allow other architectures to put their
methods there too in the future.
Using the IO address space is only relevant for x86 machines, so let's
not compile instructions to access the PCI configuration space when we
don't target x86 platforms.
Now when the user changes their preferred first day of the week in the
Calendar Settings, the Calendar application and applet views are update
accordingly without needing to restart them.
One edge case is left as a TODO() for now, since I'm not entirely sure
how to construct an element to those specifications.
With this patch, we can now run the Speedometer benchmark! :^)
We were dropping the base URL path components in the resulting URL due
to mistakenly determining the input URL to start with a Windows drive
letter. Fix this, add a spec link, and a test.
A StringView is sufficient here. This also removes the declaration of
fuzzy_match_recursive from the header, as it's only needed from within
the implementation file.
We can now "update the visibility state", which also causes
`visibilitychange` events to fire on the document.
This still needs GUI integration work at the BrowsingContext level.
We're still missing the lazy loading attribute handling, and once we hit
the navigation step, we fall back to totally ad-hoc behavior instead of
going all the way with a Fetch Request.