Given that @tclem and I have found the matcher API frustrating, I've
taken a stab at improving its ergonomics, and I've found some success
in separating composition of matchers from predicate-based narrowing
thereof.
The biggest change here is the elimination of the old `match`
combinator, which proved to be clumsy in that it complected narrowing
and composition. Top-down matching combinators are now written with
the `need` combinator and the `>>>` combinator, which is more readable
and more versatile. Here's a matcher that accepts functions with
Python docstrings:
```haskell
docstringMatcher :: ( Decl.Function :< fs
, [] :< fs
, Lit.TextElement :< fs
, term ~ Term (Sum fs) ann
) => Matcher term term
docstringMatcher = target <*
(need Decl.functionBody
>>> narrow @[]
>>> mhead
>>> narrow @Lit.TextElement
>>> ensure Lit.isTripleQuoted))
```
Pretty readable, right? Each step of the tree regular expression -
choosing function bodies, ensuring said bodies are lists, examining
the first element, and choosing only TextElements containing
triple-quoted strings - is made implicit. The old way would have
looked something like this:
```haskell
docstringMatcher = target <* match Decl.functionBody
$ narrow
$ matchM listToMaybe
$ target <* ensure Lit.isTripleQuoted
```
which is a good deal more disorganized and less flexible
in the quite-common case of applying functions during a
matching pass. Separating the act of composition from
function application is a big win here.
Further comments are inline.
@tclem and I found ourselves wanting an arrow-like combinator that
promotes a given function to a Matcher. While I think an Arrow
instance is going a little overboard, there's no harm in adding a
'purely' function, the naming of which is commensurate with the
rewriting DSL.
This also renames the module, since there's not anything really
abstract about matching (indeed, it is quite concrete).