## Description
This PR is a incremental step towards achieving the goal of #8344. It is a less ambitious version of #8484.
This PR removes all references to `HasServerConfigCtx` from the cache build and removes `ServerConfigCtx` from `CacheBuildParams`, making `ServerConfigCtx` an argument being passed around manually instead. This has several benefits: by making it an arrow argument, we now properly integrate the fields that change over time in the dependency framework, as they should be, and we can clean up some of the top-level app code.
## Implementation
In practice, this PR introduces a `HasServerConfigCtx` instance for `CacheRWT`, the monad we use to build the cache, so we can retrieve the `ServerConfigCtx` in the implementation of `CacheRWM`. This contributes to reducing the amount of `HasServerConfigCtx` in the code: we can remove `SchemaUpdateT` altogether, and we can remove the `HasServerConfigCtx` instance of `Handler`. This makes `HasServerConfigCtx` almost **an implementation detail of the Metadata API**.
This first step is enough to achieve the goal of #8344: we can now build the schema cache in the app monad, since we no longer rely on `HasServerConfigCtx` to build it.
## Drawbacks
This PR does not attempt to remove the use of `ServerConfigCtx` itself in the schema cache build: doing so would make this PR much much bigger. Ideally, to avoid having all the static fields given as arrow-ish arguments to the cache, we could depend on `HasAppEnv` in the cache build, and use `AppContext` as an arrow argument. But making the cache build depend on the full `AppEnv` and `AppContext` creates a lot of circular imports; and since removing `ServerConfigCtx` itself isn't required to achieve #8344, this PR keeps it wholesale and defers cleaning it to a future PR.
A negative consequence of this is that we need an `Eq` instance on `ServerConfigCtx`, and that instance is inelegant.
## Future work
There are several further steps we can take in parallel after this is merged. First, again, we can make a new version of #8344, removing `CacheBuild`, FINALLY. As for `ServerConfigCtx`, we can split it / rename it to make ad-hoc structures. If it turns out that `ServerConfigCtx` is only ever used for the schema cache build, we could split it between `CacheBuildEnv` and `CacheBuildContext`, which will be subsets of `AppEnv` and `AppContext`, avoiding import loops.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/8509
GitOrigin-RevId: 01b37cc3fd3490d6b117701e22fc4ac88b62b6b5
## Description
This PR does several different things that happen to overlap; the most important being:
- it removes `RunT`: it was redundant in places where we already had `Handler`, and only used in one other place, `SchemaUpdate`, for which a local `SchemaUpdateT` is more than enough;
- it reduces the number of places where we create a `ServerConfigCtx`, since now `HasServerConfigCtx` can be implemented directly by `SchemaUpdateT` and `Handler` based on the full `AppContext`;
- it drastically reduces the number of arguments we pass around in the app init code, by introducing `HasAppEnv`;
- it simplifies `HandlerCtx` to reduce duplication
In doing so, this changes paves the way towards removing `ServerConfigCtx`, since there are only very few places where we construct it: we can now introduce smaller classes than `HasServerConfigCtx`, that expose only a relevant subset of fields, and implement them where we now implement `HasServerConfigCtx`.
This PR is loosely based on ideas in #8337, that are no longer applicable due to the changes introduced in #8159. A challenge of this PR was the postgres tests, which were running in `PGMetadataStorageAppT CacheBuild` 🙀
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/8392
GitOrigin-RevId: b90c1359066d20dbea329c87762ccdd1217b4d69
## Description
### I want to speak to the `Manager`
Oh boy. This PR is both fairly straightforward and overreaching, so let's break it down.
For most network access, we need a [`HTTP.Manager`](https://hackage.haskell.org/package/http-client-0.1.0.0/docs/Network-HTTP-Client-Manager.html). It is created only once, at the top level, when starting the engine, and is then threaded through the application to wherever we need to make a network call. As of main, the way we do this is not standardized: most of the GraphQL execution code passes it "manually" as a function argument throughout the code. We also have a custom monad constraint, `HasHttpManagerM`, that describes a monad's ability to provide a manager. And, finally, several parts of the code store the manager in some kind of argument structure, such as `RunT`'s `RunCtx`.
This PR's first goal is to harmonize all of this: we always create the manager at the root, and we already have it when we do our very first `runReaderT`. Wouldn't it make sense for the rest of the code to not manually pass it anywhere, to not store it anywhere, but to always rely on the current monad providing it? This is, in short, what this PR does: it implements a constraint on the base monads, so that they provide the manager, and removes most explicit passing from the code.
### First come, first served
One way this PR goes a tiny bit further than "just" doing the aforementioned harmonization is that it starts the process of implementing the "Services oriented architecture" roughly outlined in this [draft document](https://docs.google.com/document/d/1FAigqrST0juU1WcT4HIxJxe1iEBwTuBZodTaeUvsKqQ/edit?usp=sharing). Instead of using the existing `HasHTTPManagerM`, this PR revamps it into the `ProvidesNetwork` service.
The idea is, again, that we should make all "external" dependencies of the engine, all things that the core of the engine doesn't care about, a "service". This allows us to define clear APIs for features, to choose different implementations based on which version of the engine we're running, harmonizes our many scattered monadic constraints... Which is why this service is called "Network": we can refine it, moving forward, to be the constraint that defines how all network communication is to operate, instead of relying on disparate classes constraint or hardcoded decisions. A comment in the code clarifies this intent.
### Side-effects? In my Haskell?
This PR also unavoidably touches some other aspects of the codebase. One such example: it introduces `Hasura.App.AppContext`, named after `HasuraPro.Context.AppContext`: a name for the reader structure at the base level. It also transforms `Handler` from a type alias to a newtype, as `Handler` is where we actually enforce HTTP limits; but without `Handler` being a distinct type, any code path could simply do a `runExceptT $ runReader` and forget to enforce them.
(As a rule of thumb, i am starting to consider any straggling `runReaderT` or `runExceptT` as a code smell: we should not stack / unstack monads haphazardly, and every layer should be an opaque `newtype` with a corresponding run function.)
## Further work
In several places, i have left TODOs when i have encountered things that suggest that we should do further unrelated cleanups. I'll write down the follow-up steps, either in the aforementioned document or on slack. But, in short, at a glance, in approximate order, we could:
- delete `ExecutionCtx` as it is only a subset of `ServerCtx`, and remove one more `runReaderT` call
- delete `ServerConfigCtx` as it is only a subset of `ServerCtx`, and remove it from `RunCtx`
- remove `ServerCtx` from `HandlerCtx`, and make it part of `AppContext`, or even make it the `AppContext` altogether (since, at least for the OSS version, `AppContext` is there again only a subset)
- remove `CacheBuildParams` and `CacheBuild` altogether, as they're just a distinct stack that is a `ReaderT` on top of `IO` that contains, you guessed it, the same thing as `ServerCtx`
- move `RunT` out of `RQL.Types` and rename it, since after the previous cleanups **it only contains `UserInfo`**; it could be bundled with the authentication service, made a small implementation detail in `Hasura.Server.Auth`
- rename `PGMetadaStorageT` to something a bit more accurate, such as `App`, and enforce its IO base
This would significantly simply our complex stack. From there, or in parallel, we can start moving existing dependencies as Services. For the purpose of supporting read replicas entitlement, we could move `MonadResolveSource` to a `SourceResolver` service, as attempted in #7653, and transform `UserAuthenticationM` into a `Authentication` service.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7736
GitOrigin-RevId: 68cce710eb9e7d752bda1ba0c49541d24df8209f
## Description
This PR removes `MetadataStorageT`, and cleans up all top-level error handling. In short: this PR changes `MonadMetadataStorage` to explicitly return a bunch of `Either QErr a`, instead of relying on the stack providing a `MonadError QErr`. Since we implement that class on the base monad *below any ExceptT*, this removes a lot of very complicated instances that make assumptions about the shape of the stack.
On the back of this, we can remove several layers of ExceptT from the core of the code, including the one in `RunT`, which allows us to remove several instances of `liftEitherM . runExceptT`.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/7689
GitOrigin-RevId: 97d600154d690f58c0b93fb4cc2d30fd383fd8b8
The main aim of the PR is:
1. To set up a module structure for 'remote-schemas' package.
2. Move parts by the remote schema codebase into the new module structure to validate it.
## Notes to the reviewer
Why a PR with large-ish diff?
1. We've been making progress on the MM project but we don't yet know long it is going to take us to get to the first milestone. To understand this better, we need to figure out the unknowns as soon as possible. Hence I've taken a stab at the first two items in the [end-state](https://gist.github.com/0x777/ca2bdc4284d21c3eec153b51dea255c9) document to figure out the unknowns. Unsurprisingly, there are a bunch of issues that we haven't discussed earlier. These are documented in the 'open questions' section.
1. The diff is large but that is only code moved around and I've added a section that documents how things are moved. In addition, there are fair number of PR comments to help with the review process.
## Changes in the PR
### Module structure
Sets up the module structure as follows:
```
Hasura/
RemoteSchema/
Metadata/
Types.hs
SchemaCache/
Types.hs
Permission.hs
RemoteRelationship.hs
Build.hs
MetadataAPI/
Types.hs
Execute.hs
```
### 1. Types representing metadata are moved
Types that capture metadata information (currently scattered across several RQL modules) are moved into `Hasura.RemoteSchema.Metadata.Types`.
- This new module only depends on very 'core' modules such as
`Hasura.Session` for the notion of roles and `Hasura.Incremental` for `Cacheable` typeclass.
- The requirement on database modules is avoided by generalizing the remote schemas metadata to accept an arbitrary 'r' for a remote relationship
definition.
### 2. SchemaCache related types and build logic have been moved
Types that represent remote schemas information in SchemaCache are moved into `Hasura.RemoteSchema.SchemaCache.Types`.
Similar to `H.RS.Metadata.Types`, this module depends on 'core' modules except for `Hasura.GraphQL.Parser.Variable`. It has something to do with remote relationships but I haven't spent time looking into it. The validation of 'remote relationships to remote schema' is also something that needs to be looked at.
Rips out the logic that builds remote schema's SchemaCache information from the monolithic `buildSchemaCacheRule` and moves it into `Hasura.RemoteSchema.SchemaCache.Build`. Further, the `.SchemaCache.Permission` and `.SchemaCache.RemoteRelationship` have been created from existing modules that capture schema cache building logic for those two components.
This was a fair amount of work. On main, currently remote schema's SchemaCache information is built in two phases - in the first phase, 'permissions' and 'remote relationships' are ignored and in the second phase they are filled in.
While remote relationships can only be resolved after partially resolving sources and other remote schemas, the same isn't true for permissions. Further, most of the work that is done to resolve remote relationships can be moved to the first phase so that the second phase can be a very simple traversal.
This is the approach that was taken - resolve permissions and as much as remote relationships information in the first phase.
### 3. Metadata APIs related types and build logic have been moved
The types that represent remote schema related metadata APIs and the execution logic have been moved to `Hasura.RemoteSchema.MetadataAPI.Types` and `.Execute` modules respectively.
## Open questions:
1. `Hasura.RemoteSchema.Metadata.Types` is so called because I was hoping that all of the metadata related APIs of remote schema can be brought in at `Hasura.RemoteSchema.Metadata.API`. However, as metadata APIs depended on functions from `SchemaCache` module (see [1](ceba6d6226/server/src-lib/Hasura/RQL/DDL/RemoteSchema.hs (L55)) and [2](ceba6d6226/server/src-lib/Hasura/RQL/DDL/RemoteSchema.hs (L91)), it made more sense to create a separate top-level module for `MetadataAPI`s.
Maybe we can just have `Hasura.RemoteSchema.Metadata` and get rid of the extra nesting or have `Hasura.RemoteSchema.Metadata.{Core,Permission,RemoteRelationship}` if we want to break them down further.
1. `buildRemoteSchemas` in `H.RS.SchemaCache.Build` has the following type:
```haskell
buildRemoteSchemas ::
( ArrowChoice arr,
Inc.ArrowDistribute arr,
ArrowWriter (Seq CollectedInfo) arr,
Inc.ArrowCache m arr,
MonadIO m,
HasHttpManagerM m,
Inc.Cacheable remoteRelationshipDefinition,
ToJSON remoteRelationshipDefinition,
MonadError QErr m
) =>
Env.Environment ->
( (Inc.Dependency (HashMap RemoteSchemaName Inc.InvalidationKey), OrderedRoles),
[RemoteSchemaMetadataG remoteRelationshipDefinition]
)
`arr` HashMap RemoteSchemaName (PartiallyResolvedRemoteSchemaCtxG remoteRelationshipDefinition, MetadataObject)
```
Note the dependence on `CollectedInfo` which is defined as
```haskell
data CollectedInfo
= CIInconsistency InconsistentMetadata
| CIDependency
MetadataObject
-- ^ for error reporting on missing dependencies
SchemaObjId
SchemaDependency
deriving (Eq)
```
this pretty much means that remote schemas is dependent on types from databases, actions, ....
How do we fix this? Maybe introduce a typeclass such as `ArrowCollectRemoteSchemaDependencies` which is defined in `Hasura.RemoteSchema` and then implemented in graphql-engine?
1. The dependency on `buildSchemaCacheFor` in `.MetadataAPI.Execute` which has the following signature:
```haskell
buildSchemaCacheFor ::
(QErrM m, CacheRWM m, MetadataM m) =>
MetadataObjId ->
MetadataModifier ->
```
This can be easily resolved if we restrict what the metadata APIs are allowed to do. Currently, they operate in an unfettered access to modify SchemaCache (the `CacheRWM` constraint):
```haskell
runAddRemoteSchema ::
( QErrM m,
CacheRWM m,
MonadIO m,
HasHttpManagerM m,
MetadataM m,
Tracing.MonadTrace m
) =>
Env.Environment ->
AddRemoteSchemaQuery ->
m EncJSON
```
This should instead be changed to restrict remote schema APIs to only modify remote schema metadata (but has access to the remote schemas part of the schema cache), this dependency is completely removed.
```haskell
runAddRemoteSchema ::
( QErrM m,
MonadIO m,
HasHttpManagerM m,
MonadReader RemoteSchemasSchemaCache m,
MonadState RemoteSchemaMetadata m,
Tracing.MonadTrace m
) =>
Env.Environment ->
AddRemoteSchemaQuery ->
m RemoteSchemeMetadataObjId
```
The idea is that the core graphql-engine would call these functions and then call
`buildSchemaCacheFor`.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/6291
GitOrigin-RevId: 51357148c6404afe70219afa71bd1d59bdf4ffc6
## Description
This PR removes `RQL.Types`, which was now only re-exporting a bunch of unrelated modules.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4363
GitOrigin-RevId: 894f29a19bff70b3dad8abc5d9858434d5065417
### Description
This small PR improves the representation of an endpoint method from `Text` to an enum of the supported methods. Additionally, it cleans some of the instances defined on surrounding types (such as Postgres-specific instances on Endpoint types).
Due to a name conflict, this makes `RQL.Types.Endpoint` impossible to re-export from `RQL.Types`, which in turn forces several other modules to import it explicitly, which I think is fine since we want to ultimately get rid of `RQL.Types`.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3965
GitOrigin-RevId: 33869007d0d818ddf486fb61d1f6099f9dad7570
spec: https://github.com/hasura/graphql-engine-mono/pull/2278
Briefly:
- extend metadata so that allowlist entries get a new scope field
- update `add_collection_to_allowlist` to accept this new scope field,
and adds `update_scope_of_collection_in_allowlist` to change the scope
- scope can be global or role-based; a collection is available for every
role if it is global, and available to every listed role if it is role-based
- graphql-engine-oss is aware of role-based allowlist metadata; collections
with non-global scope are treated as if they weren't in the allowlist
To run the tests:
- `cabal run graphql-engine-tests -- unit --match Allowlist`
- py-tests against pro:
- launch `graphql-engine-pro` with `HASURA_GRAPHQL_ADMIN_SECRET` and `HASURA_GRAPHQL_ENABLE_ALLOWLIST`
- `pytest test_allowlist_queries.py --hge-urls=... --pg-urls=... --hge-key=... --test-allowlist-queries --pro-tests`
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2477
Co-authored-by: Anon Ray <616387+ecthiender@users.noreply.github.com>
Co-authored-by: Robert <132113+robx@users.noreply.github.com>
GitOrigin-RevId: 01f8026fbe59d8701e2de30986511a452fce1a99
## Remaining Work
- [x] changelog entry
- [x] more tests: `<backend>_delete_remote_relationship` is definitely untested
- [x] negative tests: we probably want to assert that there are some APIs we DON'T support
- [x] update the console to use the new API, if necessary
- [x] ~~adding the corresponding documentation for the API for other backends (only `pg_` was added here)~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3170
- [x] ~~deciding which backends should support this API~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3170
- [x] ~~deciding what to do about potentially overlapping schematic representations~~
- ~~cf. https://github.com/hasura/graphql-engine-mono/pull/3157#issuecomment-995307624~~
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3171
- [x] ~~add more descriptive versioning information to some of the types that are changing in this PR~~
- cf. https://github.com/hasura/graphql-engine-mono/pull/3157#discussion_r769830920
- deferred to https://github.com/hasura/graphql-engine-mono/issues/3172
## Description
This PR fixes several important issues wrt. the remote relationship API.
- it fixes a regression introduced by [#3124](https://github.com/hasura/graphql-engine-mono/pull/3124), which prevented `<backend>_create_remote_relationship` from accepting the old argument format (break of backwards compatibility, broke the console)
- it removes the command `create_remote_relationship` added to the v1/metadata API as a work-around as part of [#3124](https://github.com/hasura/graphql-engine-mono/pull/3124)
- it reverts the subsequent fix in the console: [#3149](https://github.com/hasura/graphql-engine-mono/pull/3149)
Furthermore, this PR also addresses two other issues:
- THE DOCUMENTATION OF THE METADATA API WAS WRONG, and documented `create_remote_relationship` instead of `<backend>_create_remote_relationship`: this PR fixes this by adding `pg_` everywhere, but does not attempt to add the corresponding documentation for other backends, partly because:
- `<backend>_delete_remote_relationship` WAS BROKEN ON NON-POSTGRES BACKENDS; it always expected an argument parameterized by Postgres.
As of main, the `<backend>_(create|update|delete)_remote_relationship` commands are supported on Postgres, Citus, BigQuery, but **NOT MSSQL**. I do not know if this is intentional or not, if it even should be publicized or not, and as a result this PR doesn't change this.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3157
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
GitOrigin-RevId: 37e2f41522a9229a11c595574c3f4984317d652a
## Description
This PR fixes two issues:
- in [#2903](https://github.com/hasura/graphql-engine-mono/pull/2903), we introduced a new metadata representation of remote relationships, which broke parsing a metadata blob containing an old-style db-to-rs remote relationship
- in [#1179](https://github.com/hasura/graphql-engine-mono/pull/1179), we silently and mistakenly deprecated `create_remote_relationship` in favour of `<backend>_create_remote_relationship`
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3124
Co-authored-by: jkachmar <8461423+jkachmar@users.noreply.github.com>
Co-authored-by: Antoine Leblanc <1618949+nicuveo@users.noreply.github.com>
GitOrigin-RevId: 45481db7a8d42c7612e938707cd2d652c4c81bf8
GraphQL types can refer to each other in a circular way. The PDV framework used to use values of type `Unique` to recognize two fragments of GraphQL schema as being the same instance. Internally, this is based on `Data.Unique` from the `base` package, which simply increases a counter on every creation of a `Unique` object.
**NB**: The `Unique` values are _not_ used for knot tying the schema combinators themselves (i.e. `Parser`s). The knot tying for `Parser`s is purely based on keys provided to `memoizeOn`. The `Unique` values are _only_ used to recognize two pieces of GraphQL _schema_ as being identical. Originally, the idea was that this would help us with a perfectly correct identification of GraphQL types. But this fully correct equality checking of GraphQL types was never implemented, and does not seem to be necessary to prevent bugs.
Specifically, these `Unique` values are stored as part of `data Definition a`, which specifies a part of our internal abstract syntax tree for the GraphQL types that we expose. The `Unique` values get initialized by the `SchemaT` effect.
In #2894 and #2895, we are experimenting with how (parts of) the GraphQL types can be hidden behind certain permission predicates. This would allow a single GraphQL schema in memory to serve all roles, implementing #2711. The permission predicates get evaluated at query parsing time when we know what role is doing a certain request, thus outputting the correct GraphQL types for that role.
If the approach of #2895 is followed, then the `Definition` objects, and thus the `Unique` values, would be hidden behind the permission predicates. Since the permission predicates are evaluated only after the schema is already supposed to be built, this means that the permission predicates would prevent us from initializing the `Unique` values, rendering them useless.
The simplest remedy to this is to remove our usage of `Unique` altogether from the GraphQL schema and schema combinators. It doesn't serve a functional purpose, doesn't prevent bugs, and requires extra bookkeeping.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2980
GitOrigin-RevId: 50d3f9e0b9fbf578ac49c8fc773ba64a94b1f43d
We'll see if this improves compile times at all, but I think it's worth
doing as at least the most minimal form of module documentation.
This was accomplished by first compiling everything with
-ddump-minimal-imports, and then a bunch of scripting (with help from
ormolu)
**EDIT** it doesn't seem to improve CI compile times but the noise floor is high as it looks like we're not caching library dependencies anymore
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2730
GitOrigin-RevId: 667eb8de1e0f1af70420cbec90402922b8b84cb4
The only real use was for the dubious multitenant option
--consoleAssetsVersion, which actually overrode not just
the assets version. I.e., as far as I can tell, if you pass
--consoleAssetsVersion to multitenant, that version will
also make it into e.g. HTTP client user agent headers as
the proper graphql-engine version.
I'm dropping that option, since it seems unused in production
and I don't want to go to the effort of fixing it, but am happy
to look into that if folks feels strongly that it should be
kept.
(Reason for attacking this is that I was looking into http
client things around blacklisting, and the versioning thing
is a bit painful around http client headers.)
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2458
GitOrigin-RevId: a02b05557124bdba9f65e96b3aa2746aeee03f4a
This commit applies ormolu to the whole Haskell code base by running `make format`.
For in-flight branches, simply merging changes from `main` will result in merge conflicts.
To avoid this, update your branch using the following instructions. Replace `<format-commit>`
by the hash of *this* commit.
$ git checkout my-feature-branch
$ git merge <format-commit>^ # and resolve conflicts normally
$ make format
$ git commit -a -m "reformat with ormolu"
$ git merge -s ours post-ormolu
https://github.com/hasura/graphql-engine-mono/pull/2404
GitOrigin-RevId: 75049f5c12f430c615eafb4c6b8e83e371e01c8e
## Description
Thanks to #1664, the Metadata API types no longer require a `ToJSON` instance. This PR follows up with a cleanup of the types of the arguments to the metadata API:
- whenever possible, it moves those argument types to where they're used (RQL.DDL.*)
- it removes all unrequired instances (mostly `ToJSON`)
This PR does not attempt to do it for _all_ such argument types. For some of the metadata operations, the type used to describe the argument to the API and used to represent the value in the metadata are one and the same (like for `CreateEndpoint`). Sometimes, the two types are intertwined in complex ways (`RemoteRelationship` and `RemoteRelationshipDef`). In the spirit of only doing uncontroversial cleaning work, this PR only moves types that are not used outside of RQL.DDL.
Furthermore, this is a small step towards separating the different types all jumbled together in RQL.Types.
## Notes
This PR also improves several `FromJSON` instances to make use of `withObject`, and to use a human readable string instead of a type name in error messages whenever possible. For instance:
- before: `expected Object for Object, but encountered X`
after: `expected Object for add computed field, but encountered X`
- before: `Expecting an object for update query`
after: `expected Object for update query, but encountered X`
This PR also renames `CreateFunctionPermission` to `FunctionPermissionArgument`, to remove the quite surprising `type DropFunctionPermission = CreateFunctionPermission`.
This PR also deletes some dead code, mostly in RQL.DML.
This PR also moves a PG-specific source resolving function from DDL.Schema.Source to the only place where it is used: App.hs.
https://github.com/hasura/graphql-engine-mono/pull/1844
GitOrigin-RevId: a594521194bb7fe6a111b02a9e099896f9fed59c
Remote relationships are now supported on SQL Server and BigQuery. The major change though is the re-architecture of remote join execution logic. Prior to this PR, each backend is responsible for processing the remote relationships that are part of their AST.
This is not ideal as there is nothing specific about a remote join's execution that ties it to a backend. The only backend specific part is whether or not the specification of the remote relationship is valid (i.e, we'll need to validate whether the scalars are compatible).
The approach now changes to this:
1. Before delegating the AST to the backend, we traverse the AST, collect all the remote joins while modifying the AST to add necessary join fields where needed.
1. Once the remote joins are collected from the AST, the database call is made to fetch the response. The necessary data for the remote join(s) is collected from the database's response and one or more remote schema calls are constructed as necessary.
1. The remote schema calls are then executed and the data from the database and from the remote schemas is joined to produce the final response.
### Known issues
1. Ideally the traversal of the IR to collect remote joins should return an AST which does not include remote join fields. This operation can be type safe but isn't taken up as part of the PR.
1. There is a lot of code duplication between `Transport/HTTP.hs` and `Transport/Websocket.hs` which needs to be fixed ASAP. This too hasn't been taken up by this PR.
1. The type which represents the execution plan is only modified to handle our current remote joins and as such it will have to be changed to accommodate general remote joins.
1. Use of lenses would have reduced the boilerplate code to collect remote joins from the base AST.
1. The current remote join logic assumes that the join columns of a remote relationship appear with their names in the database response. This however is incorrect as they could be aliased. This can be taken up by anyone, I've left a comment in the code.
### Notes to the reviewers
I think it is best reviewed commit by commit.
1. The first one is very straight forward.
1. The second one refactors the remote join execution logic but other than moving things around, it doesn't change the user facing functionality. This moves Postgres specific parts to `Backends/Postgres` module from `Execute`. Some IR related code to `Hasura.RQL.IR` module. Simplifies various type class function signatures as a backend doesn't have to handle remote joins anymore
1. The third one fixes partial case matches that for some weird reason weren't shown as warnings before this refactor
1. The fourth one generalizes the validation logic of remote relationships and implements `scalarTypeGraphQLName` function on SQL Server and BigQuery which is used by the validation logic. This enables remote relationships on BigQuery and SQL Server.
https://github.com/hasura/graphql-engine-mono/pull/1497
GitOrigin-RevId: 77dd8eed326602b16e9a8496f52f46d22b795598
Modifying schema-sync implementation to use polling for OSS/Pro. Invalidations are now propagated via the `hdb_catalog.hdb_schema_notifications` table in OSS/Pro. Pattern followed is now a Listener/Processor split with Cloud listening for changes via a LISTEN/NOTIFY channel and OSS polling for resource version changes in the metadata table. See issue #460 for more details.
GitOrigin-RevId: 48434426df02e006f4ec328c0d5cd5b30183db25
fixes#3868
docker image - `hasura/graphql-engine:inherited-roles-preview-48b73a2de`
Note:
To be able to use the inherited roles feature, the graphql-engine should be started with the env variable `HASURA_GRAPHQL_EXPERIMENTAL_FEATURES` set to `inherited_roles`.
Introduction
------------
This PR implements the idea of multiple roles as presented in this [paper](https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/FGALanguageICDE07.pdf). The multiple roles feature in this PR can be used via inherited roles. An inherited role is a role which can be created by combining multiple singular roles. For example, if there are two roles `author` and `editor` configured in the graphql-engine, then we can create a inherited role with the name of `combined_author_editor` role which will combine the select permissions of the `author` and `editor` roles and then make GraphQL queries using the `combined_author_editor`.
How are select permissions of different roles are combined?
------------------------------------------------------------
A select permission includes 5 things:
1. Columns accessible to the role
2. Row selection filter
3. Limit
4. Allow aggregation
5. Scalar computed fields accessible to the role
Suppose there are two roles, `role1` gives access to the `address` column with row filter `P1` and `role2` gives access to both the `address` and the `phone` column with row filter `P2` and we create a new role `combined_roles` which combines `role1` and `role2`.
Let's say the following GraphQL query is queried with the `combined_roles` role.
```graphql
query {
employees {
address
phone
}
}
```
This will translate to the following SQL query:
```sql
select
(case when (P1 or P2) then address else null end) as address,
(case when P2 then phone else null end) as phone
from employee
where (P1 or P2)
```
The other parameters of the select permission will be combined in the following manner:
1. Limit - Minimum of the limits will be the limit of the inherited role
2. Allow aggregations - If any of the role allows aggregation, then the inherited role will allow aggregation
3. Scalar computed fields - same as table column fields, as in the above example
APIs for inherited roles:
----------------------
1. `add_inherited_role`
`add_inherited_role` is the [metadata API](https://hasura.io/docs/1.0/graphql/core/api-reference/index.html#schema-metadata-api) to create a new inherited role. It accepts two arguments
`role_name`: the name of the inherited role to be added (String)
`role_set`: list of roles that need to be combined (Array of Strings)
Example:
```json
{
"type": "add_inherited_role",
"args": {
"role_name":"combined_user",
"role_set":[
"user",
"user1"
]
}
}
```
After adding the inherited role, the inherited role can be used like single roles like earlier
Note:
An inherited role can only be created with non-inherited/singular roles.
2. `drop_inherited_role`
The `drop_inherited_role` API accepts the name of the inherited role and drops it from the metadata. It accepts a single argument:
`role_name`: name of the inherited role to be dropped
Example:
```json
{
"type": "drop_inherited_role",
"args": {
"role_name":"combined_user"
}
}
```
Metadata
---------
The derived roles metadata will be included under the `experimental_features` key while exporting the metadata.
```json
{
"experimental_features": {
"derived_roles": [
{
"role_name": "manager_is_employee_too",
"role_set": [
"employee",
"manager"
]
}
]
}
}
```
Scope
------
Only postgres queries and subscriptions are supported in this PR.
Important points:
-----------------
1. All columns exposed to an inherited role will be marked as `nullable`, this is done so that cell value nullification can be done.
TODOs
-------
- [ ] Tests
- [ ] Test a GraphQL query running with a inherited role without enabling inherited roles in experimental features
- [] Tests for aggregate queries, limit, computed fields, functions, subscriptions (?)
- [ ] Introspection test with a inherited role (nullability changes in a inherited role)
- [ ] Docs
- [ ] Changelog
Co-authored-by: Vamshi Surabhi <6562944+0x777@users.noreply.github.com>
GitOrigin-RevId: 3b8ee1e11f5ceca80fe294f8c074d42fbccfec63
Add optimistic concurrency control to the ‘replace_metadata’ call.
Prevents users from submitting out-of-date metadata to metadata-mutating APIs.
See https://github.com/hasura/graphql-engine-mono/issues/472 for details.
GitOrigin-RevId: 5f220f347a3eba288a9098b01e9913ffd7e38166