(Work here originally done by awjchen, rebased and fixed up for merge by
jberryman)
This is part of a merge train towards GHC 9.2 compatibility. The main
issue is the use of the new abstract `KeyMap` in 2.0. See:
https://hackage.haskell.org/package/aeson-2.0.3.0/changelog
Alex's original work is here:
#4305
BEHAVIOR CHANGE NOTE: This change causes a different arbitrary ordering
of serialized Json, for example during metadata export. CLI users care
about this in particular, and so we need to call it out as a _behavior
change_ as we did in v2.5.0. The good news though is that after this
change ordering should be more stable (alphabetical key order).
See: https://hasurahq.slack.com/archives/C01M20G1YRW/p1654012632634389
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4611
Co-authored-by: awjchen <13142944+awjchen@users.noreply.github.com>
GitOrigin-RevId: 700265162c782739b2bb88300ee3cda3819b2e87
## Motivation
This PR rewrites most of Relay to achieve the following:
- ~~fix a bug in which the same node id could refer to two different tables in the schema~~
- remove one of the few remaining uses of the source cache in the schema building code
In doing so, it also:
- simplifies the `BackendSchema` class by removing `node` from it,
- makes it much easier for other backends to support Relay,
- documents, re-organizes, and clarifies the code.
## Description
This PR introduces a new `NodeId` version ~~, and adapts the Postgres code to always generate this V2 version~~. This new id contains the source name, in addition to the table name, in order to disambiguate similar table names across different sources (which is now possible with source customization). In doing so, it now explicitly handles that case for V1 node ids, and returns an explicit error message instead of running the risk of _silently returning the wrong information_.
Furthermore, it adapts `nodeField` to support multiple backends; most of the code was trivial to generalize, and as a result it lowers the cost of entry for other backends, that now only need to support `AFNodeId` in their translation layer.
Finally, it removes one more cycle in the schema building code, by using the same trick we used for remote relationships instead of using the memoization trick of #4576.
## Remaining work
- ~~[ ]write a Changelog entry~~
- ~~[x] adapt all tests that were asserting on an old node id~~
## Future work
This PR was adapted from its original form to avoid a breaking change: while it introduces a Node ID V2, we keep generating V1 IDs and the parser rejects V2 IDs. It will be easy to make the switch at a later data in a subsequent PR.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4593
GitOrigin-RevId: 88e5cb91e8b0646900547fa8c7c0e1463de267a1
This is a first step towards clarifying the role of `UnpreparedValue` as part of the IR. It certainly does not belong in the parser framework.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4588
GitOrigin-RevId: d1582a0b266729b79e00d31057178a4099168e6d
### Description
The main goal of this PR is, as stated, to remove the circular dependency in the schema building code. This cycle arises from the existence of remote relationships: when we build the schema for a source A, a remote relationship might force us to jump to the schema of a source B, or some remote schema. As a result, we end up having to do a dispatch from a "leaf" of the schema, similar to the one done at the root. In turn, this forces us to carry along in the schema a lot of information required for that dispatch, AND it forces us to import the instances in scope, creating an import loop.
As discussed in #4489, this PR implements the "dependency injection" solution: we pass to the schema a function to call to do the dispatch, and to get a generated field for a remote relationship. That way, this function can be chosen at the root level, and the leaves need not be aware of the overall context.
This PR grew a bit bigger than that, however; in an attempt to try and remove the `SourceCache` from the schema altogether, it changed a lot of functions across the schema building code, to thread along the `SourceInfo b` of the source being built. This avoids having to do cache lookups within a given source. A few cases remain, such as relay, that we might try to tackle in a subsequent PR.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4557
GitOrigin-RevId: 9388e48372877520a72a9fd1677005df9f7b2d72
### Description
Several places in the code used `a /= []`, which is inelegant. To my surprise, hlint did not warn about this, despite the fact that it forces an `Eq` instance on the elements. This PR replaces all occurrences of that pattern with `not (null a)` and adds a lint warning for it.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4569
GitOrigin-RevId: 6471e75ade9e71e5d583a0dac7815c01870c696b
Previously, these were represented with a HashMap, but supposedly that map can never be empty. Now, it uses NEHashMap, which carries the non-empty invariant behind a smart constructor.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4481
GitOrigin-RevId: 93ad9aaa9354f25a1ba10e8207ae19614e1e439e
### Description
As part of the cache building process, we create / update / migrate the catalog that each DB uses as a place to store event trigger information. The function that decides how this should be done was doing an explicit `case ... of` on the backend tag, instead of delegating to one of the backend classes. The downsides of this is that:
- it adds a "friction point" where the backend matters in the core of the engine, which is otherwise written to be almost entirely backend-agnostic
- it creates imports from deep in the engine to the `Backends`, which we try to restrict to a very small set of clearly identified files (the `Instances` files)
- it is currently implemented using a "catch all" default case, which might not always be correct for new backends
This PR makes the catalog updating process a part of `BackendMetadata`, and cleans the corresponding schema cache code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4457
GitOrigin-RevId: 592f0eaa97a7c38f4e6d4400e1d2353aab12c97e
## Description
This PR removes `RQL.Types`, which was now only re-exporting a bunch of unrelated modules.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4363
GitOrigin-RevId: 894f29a19bff70b3dad8abc5d9858434d5065417
### Description
This PR moves Hasura-specific schema functions from `Hasura.GraphQL.Parser.Class` into `Hasura.GraphQL.Schema.Common`. It also removes the two corresponding monad aliases, and consequently harmonizes several parts of the code to use the same common constraint.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3947
GitOrigin-RevId: 40985a7d86da97a311bd480f9a57cc18c350c2a8
## Description
We go through the module `Hasura.Backends.MSSQL.FromIr` and split it into separate self-contained units, which we document.
Note that this PR has a slightly opinionated follow-up PR #3909 .
### Related Issues
Fix#3666
### Solution and Design
The module `FromIr` has given rise to:
* `FromIr.Expression`
* `FromIr.Query`
* `FromIr.Delete`
* `FromIr.Insert`
* `FromIr.Update`
* `FromIr.SelectIntoTempTable`
And `Execute.MutationResponse` has become `FromIr.MutationResponse` (after some slight adaptation of types).
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3908
GitOrigin-RevId: 364acf1bcdf74f2e19464c31cdded12bd8e9aa59
### Description
This PR improves the `Collect` module by re-ordering the functions to make clear what is public API and what is internal implementation. Furthermore, it makes use of `traverseOf` and `traverseFields` to reduce duplication. To do so, it also introduces a few more lenses in the rest of the codebase, and uses this opportunity to harmonize some structures that were not following our naming convention.
While the diff is massive, a lot of it is just code moving around; the file is now divided into separate sections:
- entry points: IR types for which we want to run the collection
- internal monadic structure
- internal traversals: functions that do nothing but drill down further
- actual transformations: the three cases where we do actually have work to do: selection sets on which we do want to insert join columns, extract remote relationships... those functions are left unchanged by this PR
- internal helpers
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3863
GitOrigin-RevId: f7cbecfae9eed9737b62acfa5848bfcf9d4651f6
I discovered and removed instances of Boolean Blindness about whether json numbers should be stringified or not.
Although quite far-reaching, this is a completely mechanical change and should have no observable impact outside the server code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3763
GitOrigin-RevId: c588891afd8a6923a135c736f6581a43a2eddbc7
We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema.
Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects.
We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e46 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type:
```haskell
tableSelectionSet ::
forall b r m n.
MonadBuildSchema b r m n =>
SourceName ->
TableInfo b ->
SelPermInfo b ->
m (Parser 'Output n (AnnotatedFields b))
```
There are three reasons to change this.
1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125.
2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read.
3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068.
Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter.
One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role.
So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608
GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
This PR pretty much does the same thing to remote relationship types in schemacache as what #2979 did to remote relationship types in the IR. On main remote relationships are represented by types of form `T from to`. This PR changes it to `T from` which makes it a lot more reusable.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3037
GitOrigin-RevId: 90a5c9e2346c8dc2da6ec5b8c970d6c863d2afb8
This PR simplifies the types that represent a remote relationship in IR so that they can be reused in other parts (in remote schema types) which could have remote relationships.
The comments on the PR explain the main changes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2979
GitOrigin-RevId: 559c51d9d6ae79e2183ce4347018741b9096ac74
GraphQL types can refer to each other in a circular way. The PDV framework used to use values of type `Unique` to recognize two fragments of GraphQL schema as being the same instance. Internally, this is based on `Data.Unique` from the `base` package, which simply increases a counter on every creation of a `Unique` object.
**NB**: The `Unique` values are _not_ used for knot tying the schema combinators themselves (i.e. `Parser`s). The knot tying for `Parser`s is purely based on keys provided to `memoizeOn`. The `Unique` values are _only_ used to recognize two pieces of GraphQL _schema_ as being identical. Originally, the idea was that this would help us with a perfectly correct identification of GraphQL types. But this fully correct equality checking of GraphQL types was never implemented, and does not seem to be necessary to prevent bugs.
Specifically, these `Unique` values are stored as part of `data Definition a`, which specifies a part of our internal abstract syntax tree for the GraphQL types that we expose. The `Unique` values get initialized by the `SchemaT` effect.
In #2894 and #2895, we are experimenting with how (parts of) the GraphQL types can be hidden behind certain permission predicates. This would allow a single GraphQL schema in memory to serve all roles, implementing #2711. The permission predicates get evaluated at query parsing time when we know what role is doing a certain request, thus outputting the correct GraphQL types for that role.
If the approach of #2895 is followed, then the `Definition` objects, and thus the `Unique` values, would be hidden behind the permission predicates. Since the permission predicates are evaluated only after the schema is already supposed to be built, this means that the permission predicates would prevent us from initializing the `Unique` values, rendering them useless.
The simplest remedy to this is to remove our usage of `Unique` altogether from the GraphQL schema and schema combinators. It doesn't serve a functional purpose, doesn't prevent bugs, and requires extra bookkeeping.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2980
GitOrigin-RevId: 50d3f9e0b9fbf578ac49c8fc773ba64a94b1f43d
Source typename customization (hasura/graphql-engine@aac64f2c81) introduced a mechanism to change certain names in the GraphQL schema that is exposed. In particular it allows last-minute modification of:
1. the names of some types, and
2. the names of some root fields.
The above two items are assigned distinct customization algorithms, and at times both algorithms are in scope. So a need to distinguish them is needed.
In the original design, this was addressed by introducing a newtype wrapper `Typename` around GraphQL `Name`s, dedicated to the names of types. However, in the majority of the codebase, type names are also represented by `Name`. For this reason, it was unavoidable to allow for easy conversion. This was supported by a `HasName Typename` instance, as well as by publishing the constructors of `Typename`.
This means that the type safety that newtypes can add is lost. In particular, it is now very easy to confuse type name customization with root field name customization.
This refactors the above design by instead introducing newtypes around the customization operations:
```haskell
newtype MkTypename = MkTypename {runMkTypename :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
newtype MkRootFieldName = MkRootFieldName {runMkRootFieldName :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
```
The `Monoid` instance allows easy composition of customization operations, piggybacking off of the type of `Endo`maps.
This design allows safe co-existence of the two customization algorithms, while avoiding the syntactic overhead of packing and unpacking newtypes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2989
GitOrigin-RevId: da3a353a9b003ee40c8d0a1e02872e99d2edd3ca
We'll see if this improves compile times at all, but I think it's worth
doing as at least the most minimal form of module documentation.
This was accomplished by first compiling everything with
-ddump-minimal-imports, and then a bunch of scripting (with help from
ormolu)
**EDIT** it doesn't seem to improve CI compile times but the noise floor is high as it looks like we're not caching library dependencies anymore
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2730
GitOrigin-RevId: 667eb8de1e0f1af70420cbec90402922b8b84cb4
<!-- Thank you for ss in the Title above ^ -->
## Description
<!-- Please fill thier. -->
<!-- Describe the changes from a user's perspective -->
We don't have dependency reporting mechanism for `mssql_run_sql` API i.e when a database object (table, column etc.) is dropped through the API we should raise an exception if any dependencies (relationships, permissions etc.) with the database object exists in the metadata.
This PR addresses the above mentioned problem by
-> Integrating transaction to the API to rollback the SQL query execution if dependencies exists and exception is thrown
-> Accepting `cascade` optional field in the API payload to drop the dependencies, if any
-> Accepting `check_metadata_consistency` optional field to bypass (if value set to `false`) the dependency check
### Related Issues
<!-- Please make surt title -->
<!-- Add the issue number below (e.g. #234) -->
Close#1853
### Solution and Design
<!-- How is this iss -->
<!-- It's better if we elaborate -->
The design/solution follows the `run_sql` API implementation for Postgres backend.
### Steps to test and verify
<!-- If this is a fehis is a bug-fix, how do we verify the fix? -->
- Create author - article tables and track them
- Defined object and array relationships
- Try to drop the article table without cascade or cascade set to `false`
- The server should raise the relationship dependency exists exception
## Changelog
- ✅ `CHANGELOG.md` is updated with user-facing content relevant to this PR.
If no changelog is required, then add the `no-changelog-required` label.
## Affected components
<!-- Remove non-affected components from the list -->
- ✅ Server
- ❎ Console
- ❎ CLI
- ❎ Docs
- ❎ Community Content
- ❎ Build System
- ✅ Tests
- ❎ Other (list it)
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2636
GitOrigin-RevId: 0ab152295394056c4ca6f02923142a1658ad25dc
>
### Description
>
Insert mutations for MSSQL backend. This PR implements execution logic.
### Changelog
- [x] `CHANGELOG.md` is updated with user-facing content relevant to this PR. If no changelog is required, then add the `no-changelog-required` label.
### Affected components
- [x] Server
- [x] Tests
### Related Issues
->
Close https://github.com/hasura/graphql-engine-mono/issues/2114
### Steps to test and verify
>
Track a MSSQL table and perform the generated insert mutation to test.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2248
Co-authored-by: Abby Sassel <3883855+sassela@users.noreply.github.com>
Co-authored-by: Philip Lykke Carlsen <358550+plcplc@users.noreply.github.com>
GitOrigin-RevId: 936f138c80d7a928180e6e7b0c4da64ecc1f7ebc
This commit applies ormolu to the whole Haskell code base by running `make format`.
For in-flight branches, simply merging changes from `main` will result in merge conflicts.
To avoid this, update your branch using the following instructions. Replace `<format-commit>`
by the hash of *this* commit.
$ git checkout my-feature-branch
$ git merge <format-commit>^ # and resolve conflicts normally
$ make format
$ git commit -a -m "reformat with ormolu"
$ git merge -s ours post-ormolu
https://github.com/hasura/graphql-engine-mono/pull/2404
GitOrigin-RevId: 75049f5c12f430c615eafb4c6b8e83e371e01c8e