### Description
Small PR that moves code out of `RQL.Types.hs`. Specifically, it moves `HasServerConfigCtx` to where `ServerConfigCtx` is defined. This removes code from `RQL.Types`, makes the dependency on `Server.Types` more explicit, and will make some further cleanups easier.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/4336
GitOrigin-RevId: 95bb3467d741763892c4e68a38760497157ba1aa
### Description
This PR moves Hasura-specific schema functions from `Hasura.GraphQL.Parser.Class` into `Hasura.GraphQL.Schema.Common`. It also removes the two corresponding monad aliases, and consequently harmonizes several parts of the code to use the same common constraint.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3947
GitOrigin-RevId: 40985a7d86da97a311bd480f9a57cc18c350c2a8
## Description
We go through the module `Hasura.Backends.MSSQL.FromIr` and split it into separate self-contained units, which we document.
Note that this PR has a slightly opinionated follow-up PR #3909 .
### Related Issues
Fix#3666
### Solution and Design
The module `FromIr` has given rise to:
* `FromIr.Expression`
* `FromIr.Query`
* `FromIr.Delete`
* `FromIr.Insert`
* `FromIr.Update`
* `FromIr.SelectIntoTempTable`
And `Execute.MutationResponse` has become `FromIr.MutationResponse` (after some slight adaptation of types).
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3908
GitOrigin-RevId: 364acf1bcdf74f2e19464c31cdded12bd8e9aa59
### Description
This PR improves the `Collect` module by re-ordering the functions to make clear what is public API and what is internal implementation. Furthermore, it makes use of `traverseOf` and `traverseFields` to reduce duplication. To do so, it also introduces a few more lenses in the rest of the codebase, and uses this opportunity to harmonize some structures that were not following our naming convention.
While the diff is massive, a lot of it is just code moving around; the file is now divided into separate sections:
- entry points: IR types for which we want to run the collection
- internal monadic structure
- internal traversals: functions that do nothing but drill down further
- actual transformations: the three cases where we do actually have work to do: selection sets on which we do want to insert join columns, extract remote relationships... those functions are left unchanged by this PR
- internal helpers
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3863
GitOrigin-RevId: f7cbecfae9eed9737b62acfa5848bfcf9d4651f6
No logic in this PR, just tidying things up (renaming the backend from `Experimental` to `DataWrapper`).
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3779
GitOrigin-RevId: f11acf563ccd8b9f16bc23c5e92da392aa4cfb2c
I discovered and removed instances of Boolean Blindness about whether json numbers should be stringified or not.
Although quite far-reaching, this is a completely mechanical change and should have no observable impact outside the server code.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3763
GitOrigin-RevId: c588891afd8a6923a135c736f6581a43a2eddbc7
#### TODO
- [x] fix `hashable >= 1.3.1` serialization ordering issue [^1]
- `test_graphql_mutations.py::TestGraphQLMutateEnums` was failing
- [x] fix `unordered-containers` serialization ordering issue [^2]
- `test_graphql_queries.py` was failing on Citus
- [ ] verify that no new failures have been introduced
- [ ] open issues to fix the above
- identify test cases that "leak" implementation details by depending on `hashable` instance ordering
- bump `hashable >= 1.3.1` and update test cases with new ordering OR modify them so that ordering is stable
- bump `unordered-containers >= 0.2.15.0` and update test cases with new ordering OR modify them so that ordering is stable
- one of the test cases was failing on string equality comparison for a generated Citus query
- we probably don't want to _actually_ do this unless there are _very specific_ guarantees we want to make about generated query structure
---
Just what it says on the tin.
https://github.com/hasura/graphql-engine-mono/pull/3538 updated the freeze file a few weeks ago, but it looks like the index state hadn't been updated since December so a lot of stuff that had newer versions didn't get updated.
---
EDIT: I should add, the motivation for doing this in the first place is that `hspec > 2.8.4` now supports specifying filtering spec trees based on patterns provided by the `HSPEC_MATCH` environment variable.
For example, one could have a script that executes the following:
```
HSPEC_MATCH="PostgreSQL" \
ghcid \
--command \
'cabal repl graphql-engine:test:tests-hspec \
--repl-option -O0 \
--repl-option -fobject-code' \
--test "main"
```
...which will loop on typechecking the `tests-hspec` component, and then as soon as it passes (i.e. no warnings or errors) will run _only_ the `PostgreSQL` sub-components.
[^1]: `hashable >= 1.3.1.0` [updated its default salts](https://github.com/haskell-unordered-containers/hashable/pull/196), which [broke serialization ordering](https://github.com/haskell/aeson/issues/837)
[^2]: `unordered-containers >= 0.2.16.0` [introduced changes to some of its internal functions](https://hackage.haskell.org/package/unordered-containers-0.2.16.0/changelog) which seem like they could have affected serialization stability
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3672
GitOrigin-RevId: bbd1d48c73db4021913f0b5345b7315a8d6525d3
We build the GraphQL schema by combining building blocks such as `tableSelectionSet` and `columnParser`. These building blocks individually build `{InputFields,Field,}Parser` objects. Those object specify the valid GraphQL schema.
Since the GraphQL schema is role-dependent, at some point we need to know what fragment of the GraphQL schema a specific role is allowed to access, and this is stored in `{Sel,Upd,Ins,Del}PermInfo` objects.
We have passed around these permission objects as function arguments to the schema building blocks since we first started dealing with permissions during the PDV refactor - see hasura/graphql-engine@5168b99e46 in hasura/graphql-engine#4111. This means that, for instance, `tableSelectionSet` has as its type:
```haskell
tableSelectionSet ::
forall b r m n.
MonadBuildSchema b r m n =>
SourceName ->
TableInfo b ->
SelPermInfo b ->
m (Parser 'Output n (AnnotatedFields b))
```
There are three reasons to change this.
1. We often pass a `Maybe (xPermInfo b)` instead of a proper `xPermInfo b`, and it's not clear what the intended semantics of this is. Some potential improvements on the data types involved are discussed in issue hasura/graphql-engine-mono#3125.
2. In most cases we also already pass a `TableInfo b`, and together with the `MonadRole` that is usually also in scope, this means that we could look up the required permissions regardless: so passing the permissions explicitly undermines the "single source of truth" principle. Breaking this principle also makes the code more difficult to read.
3. We are working towards role-based parsers (see hasura/graphql-engine-mono#2711), where the `{InputFields,Field,}Parser` objects are constructed in a role-invariant way, so that we have a single object that can be used for all roles. In particular, this means that the schema building blocks _need_ to be constructed in a role-invariant way. While this PR doesn't accomplish that, it does reduce the amount of role-specific arguments being passed, thus fixing hasura/graphql-engine-mono#3068.
Concretely, this PR simply drops the `xPermInfo b` argument from almost all schema building blocks. Instead these objects are looked up from the `TableInfo b` as-needed. The resulting code is considerably simpler and shorter.
One way to interpret this change is as follows. Before this PR, we figured out permissions at the top-level in `Hasura.GraphQL.Schema`, passing down the obtained `xPermInfo` objects as required. After this PR, we have a bottom-up approach where the schema building blocks themselves decide whether they want to be included for a particular role.
So this moves some permission logic out of `Hasura.GraphQL.Schema`, which is very complex.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3608
GitOrigin-RevId: 51a744f34ec7d57bc8077667ae7f9cb9c4f6c962
This PR pretty much does the same thing to remote relationship types in schemacache as what #2979 did to remote relationship types in the IR. On main remote relationships are represented by types of form `T from to`. This PR changes it to `T from` which makes it a lot more reusable.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/3037
GitOrigin-RevId: 90a5c9e2346c8dc2da6ec5b8c970d6c863d2afb8
This PR simplifies the types that represent a remote relationship in IR so that they can be reused in other parts (in remote schema types) which could have remote relationships.
The comments on the PR explain the main changes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2979
GitOrigin-RevId: 559c51d9d6ae79e2183ce4347018741b9096ac74
GraphQL types can refer to each other in a circular way. The PDV framework used to use values of type `Unique` to recognize two fragments of GraphQL schema as being the same instance. Internally, this is based on `Data.Unique` from the `base` package, which simply increases a counter on every creation of a `Unique` object.
**NB**: The `Unique` values are _not_ used for knot tying the schema combinators themselves (i.e. `Parser`s). The knot tying for `Parser`s is purely based on keys provided to `memoizeOn`. The `Unique` values are _only_ used to recognize two pieces of GraphQL _schema_ as being identical. Originally, the idea was that this would help us with a perfectly correct identification of GraphQL types. But this fully correct equality checking of GraphQL types was never implemented, and does not seem to be necessary to prevent bugs.
Specifically, these `Unique` values are stored as part of `data Definition a`, which specifies a part of our internal abstract syntax tree for the GraphQL types that we expose. The `Unique` values get initialized by the `SchemaT` effect.
In #2894 and #2895, we are experimenting with how (parts of) the GraphQL types can be hidden behind certain permission predicates. This would allow a single GraphQL schema in memory to serve all roles, implementing #2711. The permission predicates get evaluated at query parsing time when we know what role is doing a certain request, thus outputting the correct GraphQL types for that role.
If the approach of #2895 is followed, then the `Definition` objects, and thus the `Unique` values, would be hidden behind the permission predicates. Since the permission predicates are evaluated only after the schema is already supposed to be built, this means that the permission predicates would prevent us from initializing the `Unique` values, rendering them useless.
The simplest remedy to this is to remove our usage of `Unique` altogether from the GraphQL schema and schema combinators. It doesn't serve a functional purpose, doesn't prevent bugs, and requires extra bookkeeping.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2980
GitOrigin-RevId: 50d3f9e0b9fbf578ac49c8fc773ba64a94b1f43d
Source typename customization (hasura/graphql-engine@aac64f2c81) introduced a mechanism to change certain names in the GraphQL schema that is exposed. In particular it allows last-minute modification of:
1. the names of some types, and
2. the names of some root fields.
The above two items are assigned distinct customization algorithms, and at times both algorithms are in scope. So a need to distinguish them is needed.
In the original design, this was addressed by introducing a newtype wrapper `Typename` around GraphQL `Name`s, dedicated to the names of types. However, in the majority of the codebase, type names are also represented by `Name`. For this reason, it was unavoidable to allow for easy conversion. This was supported by a `HasName Typename` instance, as well as by publishing the constructors of `Typename`.
This means that the type safety that newtypes can add is lost. In particular, it is now very easy to confuse type name customization with root field name customization.
This refactors the above design by instead introducing newtypes around the customization operations:
```haskell
newtype MkTypename = MkTypename {runMkTypename :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
newtype MkRootFieldName = MkRootFieldName {runMkRootFieldName :: Name -> Name}
deriving (Semigroup, Monoid) via (Endo Name)
```
The `Monoid` instance allows easy composition of customization operations, piggybacking off of the type of `Endo`maps.
This design allows safe co-existence of the two customization algorithms, while avoiding the syntactic overhead of packing and unpacking newtypes.
PR-URL: https://github.com/hasura/graphql-engine-mono/pull/2989
GitOrigin-RevId: da3a353a9b003ee40c8d0a1e02872e99d2edd3ca