Now reporting an error if we can't find a package that satisfies the
constraints. The version number field can still be a string (as it used
to be) but will give a deprecation warning - and the old style version
string wasn't used anyway.
Version constraints can have an upper and/or lower bound, which can be
inclusive or not.
Packages are now installed in a directory with their version number.
On adding a package directory, we now look in a local 'depends'
directory first (to allow packages to be installed locally to another
project) before the global install directory.
Dependencies can have version bounds (details yet to be implemented) and
we pick the package with the highest version number that matches.
We need to keep the CONTRIBUTORS file up to date, to give people proper
credit where it's due. There may still be people missing - please feel
free to add your own name if you think it should be there!
It's disappointing to have to do this, but I think necessary because
various issue reports have shown it to be unsound (at least as far as
inference goes) and, at the very least, confusing. This patch brings us
back to the basic rules of QTT.
On the one hand, this makes the 1 multiplicity less useful, because it
means we can't flag arguments as being used exactly once which would be
useful for optimisation purposes as well as precision in the type. On
the other hand, it removes some complexity (and a hack) from
unification, and has the advantage of being correct! Also, I still
consider the 1 multiplicity an experiment.
We can still do interesting things like protocol state tracking, which
is my primary motivation at least.
Ideally, if the 1 multiplicity is going to be more generall useful,
we'll need some kind of way of doing multiplicity polymorphism in the
future. I don't think subtyping is the way (I've pretty much always come
to regret adding some form of subtyping).
Fixes#73 (and maybe some others).
This has involved quite a bit of reorganisation and some improvements in
resugaring so that the results look nice. In summary:
* Expression search now gives back a RawImp rather than a checked term,
which allows it to include case expressions
* Case with one pattern is resugared to a destructuring let
* Some name generation issues address in function generation
We look at intermediate results for local variables which are functions
that return a concrete type, or recursive calls that return a single
constructor type. In these cases, we:
* let bind the local variable/recursive call
* generate a new definition for the scope, as a 'case' function
When we recursively generate the definition, it's a bit more restricted
so as not to explode the search space. We only take the first result, we
only look one constructor deep, and we go right to left on variable
splitting so only deconstruct the name we've just added.
These continue the search from :ps and :gd next respectively, giving the
next search result until there are no more results.
Correspondingly, added ':proof-search-next' and ':generate-def-next' in
IDE mode, which continue the search from the previous ':proof-search'
and ':generate-def' respectively.
Instead of just the cursory name update that we used to do (which didn't
work properly anyway for a lot of reasons), now we add aliases for all
the names in the imported module.
So, like Idris 1, every global has a canonical name by which we can
refer to it, but it can also have aliases via "import ... as".
A %macro must always be fully applied. Whenever the elaborator
encounters a %macro application (except in a function LHS) it evaluates
the application and sends the result to %runElab. So:
%macro
foo : args -> Elab TT
...
def = foo a b c
is equivalent to
foo : args -> Elab TT
...
def = %runElab foo a b c
Including appropriate casts, and Num/Eq/Ord/Show implementations.
Also includes new primitives in Data.Buffer, and calls to foreign
functions in C as 'unsigned'.
This allows a function to be inlined for totality checking purposes
only. So, for example, (>>=) might be a function, but if it evaluates to
something constructor guarded in some context, then it might still be
productive.
If we never evaluate under Delay at all, we won't inline interface
methods, which means productive things defined in an interface can never
be today. So, make sure to set the tcinline flag before quoting the
Delayed closure.