Apparently the concrete syntax is controversial ("{apples}"
vs. "$oranges"), so I'm just adding a simple DYI version until we
agree on a concrete syntax
It's worth delaying in case doing some more work (and some more
interface resolution) can make the type more concrete. This makes
test linear011 work more smoothly, and will help with this sort of
program in general.
A better way, later, would be to try elaborating and delay only if the
type is not yet known. We have the facilities, but it's too fiddly for
me to want to implement it right now...
We need to check below top level too, since there could be holes that
we're happy to resolve by searching. The linearity test added
illustrates a place where this is needed.
Doing this is awkward, for a number of reasons, including 'pure' not
being linear in its argument - there's no guarantee it'll be used
linearly after all - and lack of multiplicity polymorphism. Fortunately
the user doesn't have to know about the ugliness underneath!
We can look at ways to make it less horrible later :). For now, this is
starting to look like something that allows us to write linear protocols
without too much extra machinery on top of IO.
Following a fairly detailed discussion on slack, the feeling is
generally that it's better to have a single interface. While precision
is nice, it doesn't appear to buy us anything here. If that turns out to
be wrong, or limiting somehow, we can revisit it later. Also:
- it's easier for backend authors if the type of IO operations is
slightly less restrictive. For example, if it's in HasIO, that limits
alternative implementations, which might be awkward for some
alternative back ends.
- it's one less extra detail to learn. This is minor, but there needs to
be a clear advantage if there's more detail to learn.
- It is difficult to think of an underlying type that can't have a Monad
instance (I have personally never encountered one - if they turns out
to exist, again, we can revisit!)
Backed by Data.IOArray. Also moved the array external primitives to a
separate module Data.IOArray.Prims, since the next step is to add a
linear bounded array type where the bounds checks are done at compile
time, so we'll want to read and write without bounds likes.
Can't export a type which refers to a private name. This has caught a
couple of visibility errors in the libraries, code and tests, so they've
been updated too.
This was taking too long, and adding too many things, because it was
going too deep in the name of having everything accessible at the REPL
and for the compiler. So, it's done a bit differently now, only chasing
everything on a "full" load (i.e., final load at the REPL)
This has some effects:
+ As systems get bigger, load time gets better (on my machine, checking
Idris.Main now takes 52s from scratch, down from 76s)
+ You might find import errors that you didn't previously get, because
things were being imported that shouldn't have been. The new way is
correct!
An unfortunate effect is that sometimes you end up getting "undefined
name" errors even if you didn't explicitly use the name, because
sometimes a module uses a name from another module in a type, which then
gets exported, and eventually needs to be reduced. This mostly happens
because there is a compile time check that should be done which I
haven't implemented yet. That is, public export definitions should only
be allowed to use names that are also public export. I'll get to this
soon.
Still a couple of things to resolve in coverage and totality checking
before we can switch on %default, so don't expect quite the right
behaviour just yet. More progress though!
Also working on this has caught a few totality errors in the Idris 2
code base that Idris 1 missed... so these are fixed on the way.