- Closes#2330
- Closes#2329
This pr implements the syntax changes described in #2330. It drops
support for the old yaml-based syntax.
Some valid examples:
```
syntax iterator for {init := 1; range := 1};
syntax fixity cons := binary {assoc := right};
syntax fixity cmp := binary;
syntax fixity cmp := binary {}; -- debatable whether we want to accept empty {} or not. I think we should
```
# Future work
This pr creates an asymmetry between iterators and operators
definitions. Iterators definition do not require a constructor. We could
add it to make it homogeneous, but it looks a bit redundant:
```
syntax iterator for := mkIterator {init := 1; range := 1};
```
We could consider merging iterator and fixity declarations with this
alternative syntax.
```
syntax XXX for := iterator {init := 1; range := 1};
syntax XXX cons := binary {assoc := right};
```
where `XXX` is a common keyword. Suggestion by @lukaszcz XXX = declare
---------
Co-authored-by: Łukasz Czajka <62751+lukaszcz@users.noreply.github.com>
Co-authored-by: Lukasz Czajka <lukasz@heliax.dev>
This PR removes the CaseBranchImplicit error from the scoper. This error
is already handled in the arity/typechecker with a good error message:
The arity checker error message for
```
case b of {
| {{true}} := false
```
is
```
Expected an explicit pattern but found an implicit instance pattern: {{true}}
```
* Closes https://github.com/anoma/juvix/issues/2356
This pr simplifies parsing by removing `FunctionParameterUnnamed`. It
also removes ghost wildcards introduced during parsing.
It also introduces an error for double braced atoms `{{x}}` that are not
on the left of an arrow `->`
* Closes#1646
Implements a basic trait framework. A simple instance search mechanism
is included which fails if there is more than one matching instance at
any step.
Example usage:
```
import Stdlib.Prelude open hiding {Show; mkShow; show};
trait
type Show A :=
mkShow {
show : A → String
};
instance
showStringI : Show String := mkShow (show := id);
instance
showBoolI : Show Bool := mkShow (show := λ{x := if x "true" "false"});
instance
showNatI : Show Nat := mkShow (show := natToString);
showList {A} : {{Show A}} → List A → String
| nil := "nil"
| (h :: t) := Show.show h ++str " :: " ++str showList t;
instance
showListI {A} {{Show A}} : Show (List A) := mkShow (show := showList);
showMaybe {A} {{Show A}} : Maybe A → String
| (just x) := "just (" ++str Show.show x ++str ")"
| nothing := "nothing";
instance
showMaybeI {A} {{Show A}} : Show (Maybe A) := mkShow (show := showMaybe);
main : IO :=
printStringLn (Show.show true) >>
printStringLn (Show.show false) >>
printStringLn (Show.show 3) >>
printStringLn (Show.show [true; false]) >>
printStringLn (Show.show [1; 2; 3]) >>
printStringLn (Show.show [1; 2]) >>
printStringLn (Show.show [true; false]) >>
printStringLn (Show.show [just true; nothing; just false]) >>
printStringLn (Show.show [just [1]; nothing; just [2; 3]]) >>
printStringLn (Show.show "abba") >>
printStringLn (Show.show ["a"; "b"; "c"; "d"]);
```
It is possible to manually provide an instance and to match on implicit
instances:
```
f {A} : {{Show A}} -> A -> String
| {{mkShow s}} x -> s x;
f' {A} : {{Show A}} → A → String
| {{M}} x := Show.show {{M}} x;
```
The trait parameters in instance types are checked to be structurally
decreasing to avoid looping in the instance search. So the following is
rejected:
```
type Box A := box A;
trait
type T A := mkT { pp : A → A };
instance
boxT {A} : {{T (Box A)}} → T (Box A) := mkT (λ{x := x});
```
We check whether each parameter is a strict subterm of some trait
parameter in the target. This ordering is included in the finite
multiset extension of the subterm ordering, hence terminating.
- Closes#2293.
- Closes#2319
I've added an effect for termination. It keeps track of which functions
failed the termination checker, which is run just after translating to
Internal. During typechecking, non-terminating functions are not
normalized. After typechecking, if there is at least one function which
failed the termination checker, an error is reported.
Additionally, we now properly check for termination of functions defined
in a let expression in the repl.
- Closes#2188.
This pr introduces a new syntactical statement for defining aliases:
```
syntax alias newName := oldName;
```
where `oldName` can be any name in the expression namespace. Fixity and
module aliases are not supported at the moment.
- The `newName` does not inherit the fixity of `oldName`. We have agreed
that the goal is to inherit the fixity of `oldName` except if `newName`
has a fixity statement, but this will be done in a separate pr as it
requires #2310.
- Closes#2269
Example:
```
type Sum (A B : Type) :=
| inj1 {
fst : A;
snd : B
}
| inj2 {
fst : A;
snd2 : B
};
sumSwap {A B : Type} : Sum A B -> Sum B A
| inj1@{fst; snd := y} := inj2 y fst
| inj2@{snd2 := y; fst := fst} := inj1 y fst;
```
- Closes#1642.
This pr introduces syntax for convenient record updates.
Example:
```
type Triple (A B C : Type) :=
| mkTriple {
fst : A;
snd : B;
thd : C;
};
main : Triple Nat Nat Nat;
main :=
let
p : Triple Nat Nat Nat := mkTriple 2 2 2;
p' :
Triple Nat Nat Nat :=
p @Triple{
fst := fst + 1;
snd := snd * 3
};
f : Triple Nat Nat Nat -> Triple Nat Nat Nat := (@Triple{fst := fst * 10});
in f p';
```
We write `@InductiveType{..}` to update the contents of a record. The
`@` is used for parsing. The `InductiveType` symbol indicates the type
of the record update. Inside the braces we have a list of `fieldName :=
newValue` items separated by semicolon. The `fieldName` is bound in
`newValue` with the old value of the field. Thus, we can write something
like `p @Triple{fst := fst + 1;}`.
Record updates `X@{..}` are parsed as postfix operators with higher
priority than application, so `f x y @X{q := 1}` is equivalent to `f x
(y @X{q := 1})`.
It is possible the use a record update with no argument by wrapping the
update in parentheses. See `f` in the above example.
- closes#1991
This pr implements named arguments as described in #1991. It does not
yet implement optional arguments, which should be added in a later pr as
they are not required for record syntax.
# Syntax Overview
Named arguments are a convenient mehcanism to provide arguments, where
we give the arguments by name instead of by position. Anything with a
type signature can have named arguments, i.e. functions, types,
constructors and axioms.
For instance, if we have (note that named arguments can also appear on
the rhs of the `:`):
```
fun : {A B : Type} (f : A -> B) : (x : A) -> B := ... ;
```
With the traditional positional application, we would write
```
fun suc zero
```
With named arguments we can write the following:
1. `fun (f := suc) (x := zero)`.
2. We can change the order: `fun (x := zero) (f := suc)`.
3. We can group the arguments: `fun (x := zero; f := suc)`.
4. We can partially apply functions with named arguments: `fun (f :=
suc) zero`.
5. We can provide implicit arguments analogously (with braces): `fun {A
:= Nat; B := Nat} (f := suc; x := zero)`.
6. We can skip implicit arguments: `fun {B := Nat} (f := suc; x :=
zero)`.
What we cannot do:
1. Skip explicit arguments. E.g. `fun (x := zero)`.
2. Mix explicit and implicit arguments in the same group. E.g. `fun (A
:= Nat; f := suc)`
3. Provide explicit and implicit arguments in different order. E.g. `fun
(f := suc; x := zero) {A := Nat}`.
- Closes#2060
- Closes#2189
- This pr adds support for the syntax described in #2189. It does not
drop support for the old syntax.
It is possible to automatically translate juvix files to the new syntax
by using the formatter with the `--new-function-syntax` flag. E.g.
```
juvix format --in-place --new-function-syntax
```
# Syntax changes
Type signatures follow this pattern:
```
f (a1 : Expr) .. (an : Expr) : Expr
```
where each `ai` is a non-empty list of symbols. Braces are used instead
of parentheses when the argument is implicit.
Then, we have these variants:
1. Simple body. After the signature we have `:= Expr;`.
2. Clauses. The function signature is followed by a non-empty sequence
of clauses. Each clause has the form:
```
| atomPat .. atomPat := Expr
```
# Mutual recursion
Now identifiers **do not need to be defined before they are used**,
making it possible to define mutually recursive functions/types without
any special syntax.
There are some exceptions to this. We cannot forward reference a symbol
`f` in some statement `s` if between `s` and the definition of `f` there
is one of the following statements:
1. Local module
2. Import statement
3. Open statement
I think it should be possible to drop the restriction for local modules
and import statements
* Closes#1992
A function identifier `fun` can be declared as an iterator with
```
syntax iterator fun;
```
For example:
```haskell
syntax iterator for;
for : {A B : Type} -> (A -> B -> A) -> A -> List B -> List A;
for f acc nil := acc;
for f acc (x :: xs) := for (f acc x) xs;
```
Iterator application syntax allows for a finite number of initializers
`acc := a` followed by a finite number of ranges `x in xs`. For example:
```
for (acc := 0) (x in lst) acc + x
```
The number of initializers plus the number of ranges must be non-zero.
An iterator application
```
fun (acc1 := a1; ..; accn := an) (x1 in b1; ..; xk in bk) body
```
gets desugared to
```
fun \{acc1 .. accn x1 .. xk := body} a1 .. an b1 .. bk
```
The `acc1`, ..., `accn`, `x1`, ..., `xk` can be patterns.
The desugaring works on a purely syntactic level. Without further
restrictions, it is not checked if the number of initializers/ranges
matches the type of the identifier. The restrictions on the number of
initializers/ranges can be specified in iterator declaration:
```
syntax iterator fun {init: n, range: k};
syntax iterator for {init: 1, range: 1};
syntax iterator map {init: 0, range: 1};
```
The attributes (`init`, `range`) in between braces are parsed as YAML to
avoid inventing and parsing a new attribute language. Both attributes
are optional.
This PR:
- Makes `vamp-ir` available in the CI (pre-release 0.1.2)
- [Use a setup-wasmer action to install
`wasmer`](https://github.com/marketplace/actions/setup-wasmer)
- Fixes cache option value for `jaxxstorm/action-install-gh-release`'s
usages
Adds support for:
- #2103
Related:
- https://github.com/anoma/vamp-ir/issues/90
---------
Co-authored-by: Jan Mas Rovira <janmasrovira@gmail.com>
- Closes#2089
Now the symbols inside `using {..}` and `hiding {..}` are properly
scoped, which means that they will be properly colored and will have
goto information. If the referenced module does not contain a symbol in
the list, an error will be thrown.
This PR resolves a few bugs in the Makefile targets for formatting and
type checking Juvix files, which were preventing the capture of type
checking errors for our examples and bad formatting for all the Juvix
files in the repository. With this PR, our code should now be clean, and
we can expect every file to be properly formatted and type checked.
Changes made:
- [x] Updated `make format-juvix-files`
- [x] Updated `make check-format-juvix-files`
- [x] Formatted all Juvix files
- [x] Comment a fragment in `examples/milestone/Bank/Bank.juvix`
In the future, we will drastically simplify the Makefile once we improve
the `format` and the `type check` command for example posted here:
- #2066
- #2087
Related:
- #2063
- #2040 (due to some typechecking errors we're not capturing before)
- #2105
- https://github.com/anoma/juvix/issues/2059
* Closes#1965
* Implements the `unroll` pragma to control the unrolling depth on a
per-function basis.
* Implements parsing of the `inline` pragma.
---------
Co-authored-by: janmasrovira <janmasrovira@gmail.com>
If an import statement to a missing module occurs when parsing in a
project with no dependencies the error message has the following form:
```
The module Foo does not exist.
It should be in /Users/paul/heliax/juvix-2023/tests/negative/NoDependencies/Foo.juvix
or in one of the dependencies:
```
This PR changes this error message to the `or in one of the
dependencies:` line is omitted from the error message when there are no
dependencies in the project.
This commit also adds a negative parse error test for missing module.
This PR adds a builtin integer type to the surface language that is
compiled to the backend integer type.
## Inductive definition
The `Int` type is defined in the standard library as:
```
builtin int
type Int :=
| --- ofNat n represents the integer n
ofNat : Nat -> Int
| --- negSuc n represents the integer -(n + 1)
negSuc : Nat -> Int;
```
## New builtin functions defined in the standard library
```
intToString : Int -> String;
+ : Int -> Int -> Int;
neg : Int -> Int;
* : Int -> Int -> Int;
- : Int -> Int -> Int;
div : Int -> Int -> Int;
mod : Int -> Int -> Int;
== : Int -> Int -> Bool;
<= : Int -> Int -> Bool;
< : Int -> Int -> Bool;
```
Additional builtins required in the definition of the other builtins:
```
negNat : Nat -> Int;
intSubNat : Nat -> Nat -> Int;
nonNeg : Int -> Bool;
```
## REPL types of literals
In the REPL, non-negative integer literals have the inferred type `Nat`,
negative integer literals have the inferred type `Int`.
```
Stdlib.Prelude> :t 1
Nat
Stdlib.Prelude> :t -1
Int
:t let x : Int := 1 in x
Int
```
## The standard library Prelude
The definitions of `*`, `+`, `div` and `mod` are not exported from the
standard library prelude as these would conflict with the definitions
from `Stdlib.Data.Nat`.
Stdlib.Prelude
```
open import Stdlib.Data.Int hiding {+;*;div;mod} public;
```
* Closes https://github.com/anoma/juvix/issues/1679
* Closes https://github.com/anoma/juvix/issues/1984
---------
Co-authored-by: Lukasz Czajka <lukasz@heliax.dev>
* Depends on PR #1832
* Closes#1799
* Removes Backend.C.Translation.FromInternal
* Removes `foreign` and `compile` blocks
* Removes unused test files
* Removes the old C runtime
* Removes other dead code
- Closes#1637.
A function type signature is now allowed to have a body. This is valid
for both top level and let definitions.
```
not : Bool -> Bool := λ {
| true := false
| false := true
};
```
* remove ≔ from the language and replace it by :=
* revert accidental changes in juvix input mode
* update stdlib submodule
* rename ℕ by Nat in the tests and examples
* fix shell tests
* add a simple positive test
* add lambda expressions to microjuvix language
* add basic normalization of type aliases
* fix test name
* normalize only functions on types
* normalize when matching
* fix type of inductive names
* improve detection of normalizing functions
* remove obsolete comment
* match constructor return type
* add test for issue 1333
* fix existing tests
* use lambda case
* add strong normalization
* Add test cases for type aliases and another fix
Co-authored-by: Jonathan Cubides <jonathan.cubides@uib.no>
* w.i.p
* Added strict positivity condition for datatypes w.i.p
* Add negative test for str.postivity check
* Add some revisions
* the branch is back to feet
* w.i.p add lots of traces to check alg.
* Add more test and revisions
* Add negative and positive test to the new flag and the keyword
* Fix shell tests.
* Make pre-commit happy
* Fix rebase conflicts
* Make pre-commit happy
* Add shell test, rename keyword, fix error msg
* Revert change
* Necessary changes
* Remove wrong unless
* Move the positivity checker to its own folder
* Add missing juvix.yaml
* Add a negative test thanks to jan
* make some style changes
* Make ormolu happy
* Remove unnecessary instance of Show
Co-authored-by: Jan Mas Rovira <janmasrovira@gmail.com>
* keep qualified names
* add comment
* add pretty field to Abstract Name
* add test
* Add shell test
* Add another test
* fix shell test
Co-authored-by: Jonathan Cubides <jonathan.cubides@uib.no>
* Implement error message for double braces
* Implement error message for implicit pattern on the left of an application
* Implement error message for constructor expected on the left of an application
Co-authored-by: Jan Mas Rovira <janmasrovira@gmail.com>
* Renaming MiniJuvix to Juvix
* Make Ormolu happy
* Make Hlint happy
* Remove redundant imports
* Fix shell tests and add target ci to our Makefile
* Make pre-commit happy