2013-06-29 14:14:10 +04:00
|
|
|
---
|
|
|
|
language: javascript
|
|
|
|
author: Adam Brenecki
|
|
|
|
author_url: http://adam.brenecki.id.au
|
|
|
|
---
|
|
|
|
|
|
|
|
Javascript was created by Netscape's Brendan Eich in 1995. It was originally
|
2013-06-30 12:03:10 +04:00
|
|
|
intended as a simpler scripting language for websites, complimenting the use of
|
|
|
|
Java for more complex web applications, but its tight integration with Web pages
|
|
|
|
and built-in support in browsers has caused it to become far more common than
|
|
|
|
Java in web frontends.
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-07-04 14:19:35 +04:00
|
|
|
JavaScript isn't just limited to web browsers, though: Node.js, a project that
|
|
|
|
provides a standalone runtime for Google Chrome's V8 JavaScript engine, is
|
|
|
|
becoming more and more popular.
|
|
|
|
|
2013-06-29 14:14:10 +04:00
|
|
|
Feedback would be highly appreciated! You can reach me at
|
|
|
|
[@adambrenecki](https://twitter.com/adambrenecki), or
|
|
|
|
[adam@brenecki.id.au](mailto:adam@brenecki.id.au).
|
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
```js
|
2013-06-29 14:14:10 +04:00
|
|
|
// Comments are like C. Single-line comments start with two slashes,
|
|
|
|
/* and multiline comments start with slash-star
|
|
|
|
and end with star-slash */
|
|
|
|
|
|
|
|
// Statements can be terminated by ;
|
|
|
|
doStuff();
|
|
|
|
|
|
|
|
// ... but they don't have to be, as semicolons are automatically inserted
|
|
|
|
// wherever there's a newline, except in certain cases.
|
|
|
|
doStuff()
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// We'll leave semicolons off here; whether you do or not will depend on your
|
|
|
|
// personal preference or your project's style guide.
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
///////////////////////////////////
|
|
|
|
// 1. Numbers, Strings and Operators
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-07-04 14:19:35 +04:00
|
|
|
// Javascript has one number type (which is a 64-bit IEEE 754 double).
|
2013-06-29 14:14:10 +04:00
|
|
|
3 // = 3
|
|
|
|
1.5 // = 1.5
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// All the basic arithmetic works as you'd expect.
|
2013-06-29 14:14:10 +04:00
|
|
|
1 + 1 // = 2
|
|
|
|
8 - 1 // = 7
|
|
|
|
10 * 2 // = 20
|
|
|
|
35 / 5 // = 7
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// Including uneven division.
|
2013-06-29 16:46:34 +04:00
|
|
|
5 / 2 // = 2.5
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// Bitwise operations also work; when you perform a bitwise operation your float
|
|
|
|
// is converted to a signed int *up to* 32 bits.
|
|
|
|
1 << 2 // = 4
|
|
|
|
|
2013-07-04 14:19:35 +04:00
|
|
|
// Precedence is enforced with parentheses.
|
2013-06-29 14:14:10 +04:00
|
|
|
(1 + 3) * 2 // = 8
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// There are three special not-a-real-number values:
|
|
|
|
Infinity // result of e.g. 1/0
|
|
|
|
-Infinity // result of e.g. -1/0
|
|
|
|
NaN // result of e.g. 0/0
|
|
|
|
|
2013-06-29 14:14:10 +04:00
|
|
|
// There's also a boolean type.
|
|
|
|
true
|
|
|
|
false
|
|
|
|
|
|
|
|
// Strings are created with ' or ".
|
|
|
|
'abc'
|
|
|
|
"Hello, world"
|
|
|
|
|
|
|
|
// Negation uses the ! symbol
|
|
|
|
!true // = false
|
|
|
|
!false // = true
|
|
|
|
|
|
|
|
// Equality is ==
|
|
|
|
1 == 1 // = true
|
|
|
|
2 == 1 // = false
|
|
|
|
|
|
|
|
// Inequality is !=
|
|
|
|
1 != 1 // = false
|
|
|
|
2 != 1 // = true
|
|
|
|
|
|
|
|
// More comparisons
|
2013-06-30 12:14:25 +04:00
|
|
|
1 < 10 // = true
|
|
|
|
1 > 10 // = false
|
|
|
|
2 <= 2 // = true
|
|
|
|
2 >= 2 // = true
|
2013-06-29 14:14:10 +04:00
|
|
|
|
|
|
|
// Strings are concatenated with +
|
|
|
|
"Hello " + "world!" // = "Hello world!"
|
|
|
|
|
|
|
|
// and are compared with < and >
|
|
|
|
"a" < "b" // = true
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// Type coercion is performed for comparisons...
|
2013-06-29 14:14:10 +04:00
|
|
|
"5" == 5 // = true
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// ...unless you use ===
|
2013-06-29 14:14:10 +04:00
|
|
|
"5" === 5 // = false
|
|
|
|
|
|
|
|
// You can access characters in a string with charAt
|
|
|
|
"This is a string".charAt(0)
|
|
|
|
|
2013-06-30 12:14:25 +04:00
|
|
|
// There's also null and undefined
|
|
|
|
null // used to indicate a deliberate non-value
|
|
|
|
undefined // used to indicate a value that hasn't been set yet
|
|
|
|
|
|
|
|
// null, undefined, NaN, 0 and "" are falsy, and everything else is truthy.
|
|
|
|
// Note that 0 is falsy and "0" is truthy, even though 0 == "0".
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
///////////////////////////////////
|
|
|
|
// 2. Variables, Arrays and Objects
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-06-29 15:39:19 +04:00
|
|
|
// Variables are declared with the var keyword. Javascript is dynamically typed,
|
|
|
|
// so you don't need to specify type. Assignment uses a single = character.
|
2013-06-30 12:18:50 +04:00
|
|
|
var someVar = 5
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-06-29 15:39:19 +04:00
|
|
|
// if you leave the var keyword off, you won't get an error...
|
2013-06-30 12:18:50 +04:00
|
|
|
someOtherVar = 10
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-06-30 12:18:50 +04:00
|
|
|
// ...but your variable will be created in the global scope, not in the scope
|
|
|
|
// you defined it in.
|
|
|
|
|
|
|
|
// Variables declared without being assigned to are set to undefined.
|
|
|
|
var someThirdVar // = undefined
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-06-30 13:27:40 +04:00
|
|
|
// There's shorthand for performing math operations on variables:
|
|
|
|
someVar += 5 // equivalent to someVar = someVar + 5; someVar is 10 now
|
|
|
|
someVar *= 10 // now someVar is 100
|
|
|
|
|
|
|
|
// and an even-shorter-hand for adding or subtracting 1
|
|
|
|
someVar++ // now someVar is 101
|
|
|
|
someVar-- // back to 100
|
|
|
|
|
2013-06-29 15:39:19 +04:00
|
|
|
// Arrays are ordered lists of values, of any type.
|
2013-06-30 13:27:40 +04:00
|
|
|
var myArray = ["Hello", 45, true]
|
|
|
|
|
|
|
|
// Their members can be accessed using the square-brackets subscript syntax.
|
|
|
|
// Array indices start at zero.
|
|
|
|
myArray[1] // = 45
|
2013-06-29 15:39:19 +04:00
|
|
|
|
|
|
|
// JavaScript's objects are equivalent to 'dictionaries' or 'maps' in other
|
|
|
|
// languages: an unordered collection of key-value pairs.
|
|
|
|
{key1: "Hello", key2: "World"}
|
|
|
|
|
|
|
|
// Keys are strings, but quotes aren't required if they're a valid
|
|
|
|
// JavaScript identifier. Values can be any type.
|
|
|
|
var myObj = {myKey: "myValue", "my other key": 4}
|
|
|
|
|
2013-06-30 13:27:40 +04:00
|
|
|
// Object attributes can also be accessed using the subscript syntax,
|
2013-06-29 15:39:19 +04:00
|
|
|
myObj["my other key"] // = 4
|
|
|
|
|
|
|
|
// ... or using the dot syntax, provided the key is a valid identifier.
|
|
|
|
myObj.myKey // = "myValue"
|
|
|
|
|
2013-06-30 12:18:50 +04:00
|
|
|
// Objects are mutable; values can be changed and new keys added.
|
2013-06-29 15:39:19 +04:00
|
|
|
myObj.myThirdKey = true
|
2013-06-29 14:14:10 +04:00
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// If you try to access a value that's not yet set, you'll get undefined.
|
|
|
|
myObj.myFourthKey // = undefined
|
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
///////////////////////////////////
|
|
|
|
// 3. Logic and Control Structures
|
2013-06-29 14:28:54 +04:00
|
|
|
|
2013-06-30 13:27:40 +04:00
|
|
|
// The if structure works as you'd expect.
|
|
|
|
var count = 1
|
|
|
|
if (count == 3){
|
|
|
|
// evaluated if count is 3
|
|
|
|
} else if (count == 4) {
|
|
|
|
// evaluated if count is 4
|
|
|
|
} else {
|
2013-07-03 09:51:03 +04:00
|
|
|
// evaluated if it's not either 3 or 4
|
2013-06-30 13:27:40 +04:00
|
|
|
}
|
|
|
|
|
|
|
|
// As does while.
|
|
|
|
while (true) {
|
|
|
|
// An infinite loop!
|
|
|
|
}
|
|
|
|
|
|
|
|
// Do-while loops are like while loops, except they always run at least once.
|
|
|
|
var input
|
|
|
|
do {
|
|
|
|
input = getInput()
|
|
|
|
} while (!isValid(input))
|
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// the for loop is the same as C and Java:
|
|
|
|
// initialisation; continue condition; iteration.
|
2013-06-30 13:27:40 +04:00
|
|
|
for (var i = 0; i < 5; i++){
|
|
|
|
// will run 5 times
|
|
|
|
}
|
|
|
|
|
|
|
|
// && is logical and, || is logical or
|
|
|
|
if (house.size == "big" && house.colour == "blue"){
|
|
|
|
house.contains = "bear"
|
|
|
|
}
|
|
|
|
if (colour == "red" || colour == "blue"){
|
|
|
|
// colour is either red or blue
|
|
|
|
}
|
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// && and || "short circuit", which is useful for setting default values.
|
|
|
|
var name = otherName || "default"
|
2013-06-30 13:27:40 +04:00
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
///////////////////////////////////
|
|
|
|
// 4. Functions, Scope and Closures
|
2013-06-29 14:28:54 +04:00
|
|
|
|
2013-07-04 14:19:24 +04:00
|
|
|
// JavaScript functions are declared with the function keyword.
|
|
|
|
function myFunction(thing){
|
|
|
|
return thing.toUpperCase()
|
|
|
|
}
|
|
|
|
myFunction("foo") // = "FOO"
|
|
|
|
|
|
|
|
// Functions can also be defined "anonymously" - without a name:
|
|
|
|
function(thing){
|
|
|
|
return thing.toLowerCase()
|
|
|
|
}
|
|
|
|
// (we can't call our function, since we don't have a name to refer to it with)
|
|
|
|
|
|
|
|
// JavaScript functions are first class objects, so they can be reassigned to
|
|
|
|
// different variable names and passed to other functions as arguments - for
|
|
|
|
// example, when supplying an event handler:
|
|
|
|
function myFunction(){
|
|
|
|
// this code will be called in 5 seconds' time
|
|
|
|
}
|
|
|
|
setTimeout(myFunction, 5000)
|
|
|
|
|
|
|
|
// You can even write the function statement directly in the call to the other
|
|
|
|
// function.
|
|
|
|
|
|
|
|
setTimeout(function myFunction(){
|
|
|
|
// this code will be called in 5 seconds' time
|
|
|
|
}, 5000)
|
|
|
|
|
|
|
|
// JavaScript has function scope; functions get their own scope but other blocks
|
|
|
|
// do not.
|
|
|
|
if (true){
|
|
|
|
var i = 5
|
|
|
|
}
|
|
|
|
i // = 5 - not undefined as you'd expect in a block-scoped language
|
|
|
|
|
|
|
|
// This has led to a common pattern of "immediately-executing anonymous
|
|
|
|
// functions", which prevent temporary variables from leaking into the global
|
|
|
|
// scope.
|
2013-08-05 17:22:53 +04:00
|
|
|
(function(){
|
2013-07-04 14:19:24 +04:00
|
|
|
var temporary = 5
|
|
|
|
// We can access the global scope by assiging to the 'global object', which
|
|
|
|
// in a web browser is always 'window'. The global object may have a
|
|
|
|
// different name in non-browser environments such as Node.js.
|
|
|
|
window.permanent = 10
|
|
|
|
// Or, as previously mentioned, we can just leave the var keyword off.
|
|
|
|
permanent2 = 15
|
2013-08-05 17:22:53 +04:00
|
|
|
})()
|
2013-07-04 14:19:24 +04:00
|
|
|
temporary // raises ReferenceError
|
|
|
|
permanent // = 10
|
|
|
|
permanent2 // = 15
|
|
|
|
|
|
|
|
// One of JavaScript's most powerful features is closures. If a function is
|
|
|
|
// defined inside another function, the inner function has access to all the
|
|
|
|
// outer function's variables.
|
|
|
|
function sayHelloInFiveSeconds(name){
|
|
|
|
var prompt = "Hello, " + name + "!"
|
|
|
|
function inner(){
|
|
|
|
alert(prompt)
|
|
|
|
}
|
|
|
|
setTimeout(inner, 5000)
|
|
|
|
// setTimeout is asynchronous, so this function will finish without waiting
|
|
|
|
// 5 seconds. However, once the 5 seconds is up, inner will still have
|
|
|
|
// access to the value of prompt.
|
|
|
|
}
|
|
|
|
sayHelloInFiveSeconds("Adam") // will open a popup with "Hello, Adam!" in 5s
|
|
|
|
|
2013-07-04 20:24:21 +04:00
|
|
|
///////////////////////////////////
|
|
|
|
// 5. More about Objects; Constructors and Prototypes
|
2013-06-29 15:39:19 +04:00
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// Objects can contain functions.
|
|
|
|
var myObj = {
|
2013-06-29 15:39:19 +04:00
|
|
|
myFunc: function(){
|
|
|
|
return "Hello world!"
|
|
|
|
}
|
|
|
|
}
|
|
|
|
myObj.myFunc() // = "Hello world!"
|
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// When functions attached to an object are called, they can access the object
|
|
|
|
// they're attached to using the this keyword.
|
2013-06-29 15:39:19 +04:00
|
|
|
myObj = {
|
|
|
|
myString: "Hello world!",
|
|
|
|
myFunc: function(){
|
|
|
|
return this.myString
|
|
|
|
}
|
|
|
|
}
|
|
|
|
myObj.myFunc() // = "Hello world!"
|
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// What this is set to has to do with how the function is called, not where
|
|
|
|
// it's defined. So, our function doesn't work if it isn't called in the
|
|
|
|
// context of the object.
|
2013-06-29 15:39:19 +04:00
|
|
|
var myFunc = myObj.myFunc
|
|
|
|
myFunc() // = undefined
|
|
|
|
|
|
|
|
// Inversely, a function can be assigned to the object and gain access to it
|
2013-06-30 12:44:53 +04:00
|
|
|
// through this, even if it wasn't attached when it was defined.
|
2013-06-29 15:39:19 +04:00
|
|
|
var myOtherFunc = function(){
|
|
|
|
return this.myString.toUpperCase()
|
|
|
|
}
|
|
|
|
myObj.myOtherFunc = myOtherFunc
|
|
|
|
myObj.myOtherFunc() // = "HELLO WORLD!"
|
|
|
|
|
|
|
|
// When you call a function with the new keyword, a new object is created, and
|
|
|
|
// made available to the function via this. Functions designed to be called
|
|
|
|
// like this are called constructors.
|
|
|
|
|
|
|
|
var MyConstructor = function(){
|
|
|
|
this.myNumber = 5
|
|
|
|
}
|
|
|
|
myNewObj = new MyConstructor() // = {myNumber: 5}
|
|
|
|
myNewObj.myNumber // = 5
|
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// Every JavaScript object has a 'prototype'. When you go to access a property
|
|
|
|
// on an object that doesn't exist on the actual object, the interpreter will
|
|
|
|
// look at its prototype.
|
|
|
|
|
|
|
|
// Some JS implementations let you access an object's prototype on the magic
|
|
|
|
// property __proto__. While this is useful for explaining prototypes it's not
|
|
|
|
// part of the standard; we'll get to standard ways of using prototypes later.
|
|
|
|
var myObj = {
|
|
|
|
myString: "Hello world!",
|
|
|
|
}
|
2013-06-29 15:39:19 +04:00
|
|
|
var myPrototype = {
|
|
|
|
meaningOfLife: 42,
|
2013-06-30 12:44:53 +04:00
|
|
|
myFunc: function(){
|
2013-06-29 15:39:19 +04:00
|
|
|
return this.myString.toLowerCase()
|
|
|
|
}
|
|
|
|
}
|
|
|
|
myObj.__proto__ = myPrototype
|
2013-06-30 12:44:53 +04:00
|
|
|
myObj.meaningOfLife // = 42
|
|
|
|
|
|
|
|
// This works for functions, too.
|
|
|
|
myObj.myFunc() // = "hello world!"
|
2013-06-29 15:39:19 +04:00
|
|
|
|
|
|
|
// Of course, if your property isn't on your prototype, the prototype's
|
|
|
|
// prototype is searched, and so on.
|
|
|
|
myPrototype.__proto__ = {
|
|
|
|
myBoolean: true
|
|
|
|
}
|
|
|
|
myObj.myBoolean // = true
|
|
|
|
|
|
|
|
// There's no copying involved here; each object stores a reference to its
|
|
|
|
// prototype. This means we can alter the prototype and our changes will be
|
|
|
|
// reflected everywhere.
|
2013-06-30 12:44:53 +04:00
|
|
|
myPrototype.meaningOfLife = 43
|
|
|
|
myObj.meaningOfLife // = 43
|
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// We mentioned that __proto__ was non-standard, and there's no standard way to
|
|
|
|
// change the prototype of an existing object. However, there's two ways to
|
|
|
|
// create a new object with a given prototype.
|
2013-06-29 15:39:19 +04:00
|
|
|
|
2013-06-30 12:44:53 +04:00
|
|
|
// The first is Object.create, which is a recent addition to JS, and therefore
|
|
|
|
// not available in all implementations yet.
|
2013-06-29 15:39:19 +04:00
|
|
|
var myObj = Object.create(myPrototype)
|
2013-06-30 12:44:53 +04:00
|
|
|
myObj.meaningOfLife // = 43
|
2013-06-29 15:39:19 +04:00
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// The second way, which works anywhere, has to do with constructors.
|
|
|
|
// Constructors have a property called prototype. This is *not* the prototype of
|
|
|
|
// the constructor function itself; instead, it's the prototype that new objects
|
|
|
|
// are given when they're created with that constructor and the new keyword.
|
|
|
|
myConstructor.prototype = {
|
|
|
|
getMyNumber: function(){
|
2013-07-12 23:14:52 +04:00
|
|
|
return this.myNumber
|
2013-07-03 09:51:03 +04:00
|
|
|
}
|
|
|
|
}
|
|
|
|
var myNewObj2 = new myConstructor()
|
|
|
|
myNewObj2.getMyNumber() // = 5
|
|
|
|
|
|
|
|
// Built-in types like strings and numbers also have constructors that create
|
|
|
|
// equivalent wrapper objects.
|
|
|
|
var myNumber = 12
|
|
|
|
var myNumberObj = new Number(12)
|
|
|
|
myNumber == myNumberObj // = true
|
|
|
|
|
|
|
|
// Except, they aren't exactly equivalent.
|
|
|
|
typeof(myNumber) // = 'number'
|
|
|
|
typeof(myNumberObj) // = 'object'
|
|
|
|
myNumber === myNumberObj // = false
|
|
|
|
if (0){
|
|
|
|
// This code won't execute, because 0 is falsy.
|
|
|
|
}
|
|
|
|
if (Number(0)){
|
|
|
|
// This code *will* execute, because Number(0) is truthy.
|
|
|
|
}
|
2013-06-29 15:39:19 +04:00
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// However, the wrapper objects and the regular builtins share a prototype, so
|
|
|
|
// you can actually add functionality to a string, for instance.
|
2013-06-29 15:39:19 +04:00
|
|
|
String.prototype.firstCharacter = function(){
|
|
|
|
return this.charAt(0)
|
|
|
|
}
|
|
|
|
"abc".firstCharacter() // = "a"
|
|
|
|
|
2013-07-03 09:51:03 +04:00
|
|
|
// This fact is often used in "polyfilling", which is implementing newer
|
|
|
|
// features of JavaScript in an older subset of JavaScript, so that they can be
|
|
|
|
// used in older environments such as outdated browsers.
|
2013-06-30 12:44:53 +04:00
|
|
|
|
|
|
|
// For instance, we mentioned that Object.create isn't yet available in all
|
2013-07-03 09:51:03 +04:00
|
|
|
// implementations, but we can still use it with this polyfill:
|
|
|
|
if (Object.create === undefined){ // don't overwrite it if it exists
|
2013-06-30 12:44:53 +04:00
|
|
|
Object.create = function(proto){
|
|
|
|
// make a temporary constructor with the right prototype
|
|
|
|
var Constructor = function(){}
|
|
|
|
Constructor.prototype = proto
|
2013-07-03 09:51:03 +04:00
|
|
|
// then use it to create a new, appropriately-prototyped object
|
2013-06-30 12:44:53 +04:00
|
|
|
return new Constructor()
|
|
|
|
}
|
|
|
|
}
|
2013-06-29 14:14:10 +04:00
|
|
|
```
|
2013-06-30 12:03:10 +04:00
|
|
|
|
|
|
|
## Further Reading
|
|
|
|
|
|
|
|
The [Mozilla Developer
|
|
|
|
Network](https://developer.mozilla.org/en-US/docs/Web/JavaScript) provides
|
|
|
|
excellent documentation for JavaScript as it's used in browsers. Plus, it's a
|
|
|
|
wiki, so as you learn more you can help others out by sharing your own
|
|
|
|
knowledge.
|
2013-06-30 13:27:40 +04:00
|
|
|
|
2013-07-04 14:19:35 +04:00
|
|
|
MDN's [A re-introduction to
|
|
|
|
JavaScript](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)
|
|
|
|
covers much of the concepts covered here in more detail. This guide has quite
|
|
|
|
deliberately only covered the JavaScript language itself; if you want to learn
|
|
|
|
more about how to use JavaScript in web pages, start by learning about the
|
|
|
|
[Document Object
|
|
|
|
Model](https://developer.mozilla.org/en-US/docs/Using_the_W3C_DOM_Level_1_Core)
|
|
|
|
|
2013-07-15 04:06:33 +04:00
|
|
|
[Javascript Garden](http://bonsaiden.github.io/JavaScript-Garden/) is an in-depth
|
|
|
|
guide of all the counter-intuitive parts of the language.
|
|
|
|
|
2013-06-30 13:27:40 +04:00
|
|
|
In addition to direct contributors to this article, some content is adapted
|
|
|
|
from Louie Dinh's Python tutorial on this site, and the [JS
|
|
|
|
Tutorial](https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript)
|
|
|
|
on the Mozilla Developer Network.
|