Added several functions for `Dec`. The set of functions and names
are picked consistently with `Maybe`:
* `isNothing` -> `isNo`
* `isJust` -> `isYes`
* `IsJust` -> `IsYes`
* `isItJust` -> `isItYes`
This is follow-up to #942
Ideally, liftIO would always be linear, but that has lots of knock-on
effects for other monads which we might want to put in HasIO, now that
subtyping is gone. We'll have to revisit this when we have some kind of
multiplicity polymorphism.
Snoc add an element at the end of the vector. The main use case
for such a function is to get the expected type signature
Vect n a -> a -> Vect (S n) a instead of
Vect n a -> a -> Vect (n + 1) a which you get by using `++ [x]`
Snoc gets is name from `cons` by reversin each letter, indicating
tacking on the element at the end rather than the begining.
`append` would also be a suitable name.
It's disappointing to have to do this, but I think necessary because
various issue reports have shown it to be unsound (at least as far as
inference goes) and, at the very least, confusing. This patch brings us
back to the basic rules of QTT.
On the one hand, this makes the 1 multiplicity less useful, because it
means we can't flag arguments as being used exactly once which would be
useful for optimisation purposes as well as precision in the type. On
the other hand, it removes some complexity (and a hack) from
unification, and has the advantage of being correct! Also, I still
consider the 1 multiplicity an experiment.
We can still do interesting things like protocol state tracking, which
is my primary motivation at least.
Ideally, if the 1 multiplicity is going to be more generall useful,
we'll need some kind of way of doing multiplicity polymorphism in the
future. I don't think subtyping is the way (I've pretty much always come
to regret adding some form of subtyping).
Fixes#73 (and maybe some others).
This is done to make able for `Data.*` modules of datatypes declared in
prelude to import modules that have their own definitions of `DecEq`
inside them (i.e. modules of datatypes declared in the `base`).
Division Theorem. For every natural number `x` and positive natural
number `n`, there is a unique decomposition:
`x = q*n + r`
with `q`,`r` natural and `r` < `n`.
`q` is the quotient when dividing `x` by `n`
`r` is the remainder when dividing `x` by `n`.
This commit adds a proof for this fact, in case
we want to reason about modular arithmetic (for example, when dealing
with binary representations). A future, more systematic, development could
perhaps follow: @clayrat 's (idris1) port of Coq's binary arithmetics:
https://github.com/sbp/idris-bi/blob/master/src/Data/Bin/DivMod.idrhttps://github.com/sbp/idris-bi/blob/master/src/Data/Biz/DivMod.idrhttps://github.com/sbp/idris-bi/blob/master/src/Data/BizMod2/DivMod.idr
In the process, it bulks up the stdlib with:
+ a generic PreorderReasoning module for arbitrary preorders,
analogous for the equational reasoning module
+ some missing facts about Nat operations.
+ Refactor some Nat order properties using a 'reflect' function
Co-authored-by: Ohad Kammar <ohad.kammar@ed.ac.uk>
Co-authored-by: G. Allais <guillaume.allais@ens-lyon.org>
broaden what Names can be reflected and refied
I did not add the Names I wasn't sure how to test but have put placeholders
that produce clearer error messages.
Nipping this historical artifact in the bud before it roots. It's often
useful to be able to `map` directly to the result of a StateT computation
and due to how Functor works this is made harder when the tuple is
(a,state) vs (state,a)
* [contrib] Add misc libraries to contrib
Expose some `private` function in libs/base that I needed, and seem like
their visibility was forgotten
I'd appreciate a code review, especially to tell me I'm
re-implementing something that's already elsewhere in the library
Mostly extending existing functionality:
* `Data/Void.idr`: add some utility functions for manipulating absurdity.
* `Decidable/Decidable/Extra.idr`: add support for double negation elimination in decidable relations
* `Data/Fun/Extra.idr`:
+ add `application` (total and partil) for n-ary functions
+ add (slightly) dependent versions of these operations
* `Decidable/Order/Strict.idr`: a strict preorder is what you get when
you remove the diagonal from a pre-order. For example, `<` is the
associated preorder for `<=` over `Nat`.
Analogous to `Decidable.Order`. The proof search mechanism struggled
a bit, so I had to hack it --- sorry.
Eventually we should move `Data.Fun.Extra.Pointwise` to `Data.Vect.Quantifiers` in base
but we don't have any interesting uses for it at the moment so it's not
urgent.
Co-authored by @gallais
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the underlying representation of
namespaces rather than say what we mean (using `isSuffixOf` to mean
`isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementation when
showing / pretty-printing namespaces
This PR introduces a `Namespace` newtype containing a list of strings.
Nested namespaces are still stored in reverse order but the exposed
interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
Until now namespaces were stored as (reversed) lists of strings.
It led to:
* confusing code where we work on the representation rather than say
what we mean (e.g. using `isSuffixOf` to mean `isParentOf`)
* potentially introducing errors by not respecting the invariant cf.
bug report #616 (but also name generation in the scheme backend
although that did not lead to bugs as it was self-consistent AFAICT)
* ad-hoc code to circumvent overlapping interface implementations when
showing / pretty-printing namespaces
This introduces a Namespace newtype containing non-empty lists of
strings. Nested namespaces are still stored in reverse order but the
exposed interface aims to support programming by saying what we mean
(`isParentOf`, `isApproximationOf`, `X <.> Y` computes to `X.Y`, etc.)
irrespective of the underlying representation.
Main change
===========
The main change is to the type of function dealing with an untouched
segment of the local scope. e.g.
```
weak : {outer, vars : _} -> (ns : List Name) ->
tm (outer ++ inner) -> tm (outer ++ ns ++ inner)
```
Instead we now write
```
weak : SizeOf ns -> tm (outer ++ inner) -> tm (outer ++ ns ++ inner)
```
meaning that we do not need the values of `outer`, `inner` and `ns`
at runtime. Instead we only demand a `SizeOf ns` which is a `Nat`
together with an (erased) proof that `ns` is of that length.
Other modifications
===================
Quadratic behaviour
-------------------
A side effect of this refactor is the removal of two sources of
quadratic behaviour. They typically arise in a situation where
work is done on a scope of the form
```
outer ++ done ++ ns ++ inner
```
When `ns` is non-empty, some work is performed and then the variable
is moved to the pile of things we are `done` with. This leads to
recursive calls of the form `f done` -> `f (done ++ [v])` leading
to a cost quadratic in the size of `ns`.
Now that we only care about `SizeOf done`, the recursive call is
(once all the runtime irrelevant content is erased) for the form
`f n` -> `f (S n)`!
More runtime irrelevance
------------------------
In some places we used to rely on a list of names `vars` being
available. However once we only care about the length of `vars`,
the fact it is not available is not a limitation.
For instance a `SizeOf vars` can be reconstructed from an environment
assigning values to `vars` even if `vars` is irrelevant. Indeed the
size of the environment is the same as that of `vars`.
For Void and Either
This is because I ended up using them elsewhere, so why not include them in the stdlib.
Also expose left/rightInjective functions, as are used in the DecEq proofs.
In a 'Bind', normalise the result of the first action, rather than
quoting the HNF. This improves performance since the HNF could be quite
big when quoted back.
Ideally, we wouldn't have to quote and unquote here, and we can probably
achieve this by tinkering with the evaluator.
This has an unfortunate effect on the reflection002 test, in that the
"typed template Idris" example now evaluates too much. But, I think the
overall performance is too important for the primary motivation
behind elaborator reflection. I will return to this!
This didn't cause a problem before as it was likely just ignored by the C
function. According to Edwin the extra argument is a leftover from when this
was a pure scheme call.
The ports are rather straight forward and I have purposefully written
the documentation to be beginner friendly.
Note, I have diverged from Idris1 over the naming of the projection
functions to make them consistent with `Pair` and `DPair`.
Conditional variables with timeout in Chez didn't work, so changed to a
consistent meaning of the timeout (microseconds). Also fix linearity of
unsafePerformIO.
Following a fairly detailed discussion on slack, the feeling is
generally that it's better to have a single interface. While precision
is nice, it doesn't appear to buy us anything here. If that turns out to
be wrong, or limiting somehow, we can revisit it later. Also:
- it's easier for backend authors if the type of IO operations is
slightly less restrictive. For example, if it's in HasIO, that limits
alternative implementations, which might be awkward for some
alternative back ends.
- it's one less extra detail to learn. This is minor, but there needs to
be a clear advantage if there's more detail to learn.
- It is difficult to think of an underlying type that can't have a Monad
instance (I have personally never encountered one - if they turns out
to exist, again, we can revisit!)